第四节、混凝动力学_第1页
第四节、混凝动力学_第2页
第四节、混凝动力学_第3页
第四节、混凝动力学_第4页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档第四节、混凝动力学影响混凝效果的因素中,水力条件是个重要因素,要达到最佳的混凝效果,应该创造良好的水力条件, 即设计合理的混合池和絮凝池, 而混凝动力学正是其设计的基础。一、基本概念1、异向絮凝( perikinetic flocculation)异向絮凝指脱稳胶体由于布朗运动相碰撞而凝聚的现象。异向絮凝主要对微小颗粒d 1m 起作用。2、同向絮凝( orthokinetic flocculation)同向絮凝指借助于水力或机械搅拌使胶体颗粒相碰撞而凝聚的现象。同向絮凝主要对大颗粒d1m 起作用。说明:(1)在混合和絮凝初期,主要表现为异向絮凝,形成微絮凝体;(2)在絮凝初期以后,则主

2、要表现为同向絮凝,形成粗大絮凝体;(3)两者在时间上没有严格区分,在任何阶段都可能同时存在,只是程度不同。3、碰撞速率碰撞速率指单位时间、单位体积内颗粒的碰撞次数。4、絮凝速率絮凝速率指单位时间、单位体积内颗粒总数量浓度的减少速率。 絮凝速率 1/2 碰撞速率 因为:(1)在计算颗粒 i 和颗粒 j 碰撞次数时,是将两个颗粒相互碰撞数计算了两次,即 i 向 j 碰撞一次, j 又向 i 碰撞一次。而实际上两个颗粒一次相碰就相互凝聚成一个大的颗粒,故絮凝速率为总计算碰撞数的1/2 。(2)负号表示颗粒总数量随絮凝时间而减少,这是小颗粒相互结成大颗粒的结果。二、异向絮凝布朗运动为一种无规则的热运动

3、,将导致水中颗粒相互碰撞。假设:水中胶体颗粒已完全脱稳; 颗粒每次碰撞都是有效碰撞, 都会导致颗粒相互聚集,使小颗粒变成大颗粒; 颗粒为均匀球体。 根据费克扩散定律,可导出颗粒碰撞速率为:N P 8 dD Bn2(27)式中, NP 单位体积中的颗粒在异向絮凝中碰撞速率(1/cm3 ·s);D2B 布朗运动扩散系数( cm/s );d 颗粒直径( cm);n 颗粒数量浓度(个 /cm3)。扩散系数 DB 用斯笃克斯爱因斯坦公式表示:。1欢迎下载精品文档D BKT(28)3 d1622·K;式中, K 波茨曼常数, K1.38 ×10g·cm/sT 水的热

4、力学温度( K); 水的动力粘度( g/cm· s)。将( 2 8)代入( 27)可得:N P8 KTn 2(29)3于是,异向絮凝速率为:dn4KTn 2(210)dt3公式( 210)是根据颗粒每次碰撞都导致凝聚而推导出来的。实际上并非每次碰撞都有效,引入有效碰撞系数加以修正,则有:dn4KTn 2(211)dt3有效碰撞系数反映颗粒脱稳程度。 1,表示完全脱稳,不存在排斥作用; 1,则存在排斥作用,碰撞时仅部分凝聚。有些研究者认为,在水处理中,有效碰撞系数通常为 0.01 0.448 。由( 2 11)可知,异向絮凝速率与水温有关,与颗粒数量浓度的平方成正比,而与颗粒粒径无关。

5、由于只有小颗粒才具有布朗运动, 随着颗粒凝聚增大,布朗运动将逐渐减弱,当 d1m 时,布朗运动基本消失,故要使颗粒进一步碰撞凝聚,必须进行同向絮凝。公式( 27)的推导过程如下:为讨论简便,设水中某一球体颗粒朗运动而向 j 颗粒扩散。一旦 i 颗粒与小。根据费克扩散定律,可求得 i 和 jj 固定不动,所有其他球体颗粒i 由于布j 颗粒碰撞,则 i 颗粒数量浓度将随之减的碰撞速率:N ij4 Rij Di ni式中, Nij i 与 j 颗粒碰撞速率( 1/cm3 ·s); n i i 颗粒数量浓度(个 /cm3);2Di i颗粒扩散系数( cm/s );Rij 碰撞半径, Rij

6、r i r j (cm)。当 j 颗粒不是一个( nj 1),且 j 颗粒也具有布朗运动时,则速率:(212)i 和 j 的碰撞N ij 4 Rij ( Di D j )ni n j(213)设 i 和 j 颗粒粒径相等,从而扩散系数也相等, 于是有:R rr 2r d,ijij。2欢迎下载精品文档ijijn,代入上式得到:D D 2D, n nNij8 dDn 2(214)公式( 214)即为( 27)。三、同向絮凝1、层流条件下的同向絮凝在层流条件下, i 和 j 颗粒均随水流前进, i 颗粒的前进速率小于j 颗粒,则某一时刻, i 与 j 必将碰撞。设水中颗粒为均匀球体,即di dj d

7、,i 与 j 的碰撞速率为:N04 n2d 3G(2 15)3式中, G 速度梯度( s-1 ),Gdu/dz ;du 相邻两流层的流速增量(cm/s);dz 垂直于水流方向的两流层之间距离。公式( 215)的推导过程:为便于讨论,首先假定 i 颗粒静止不动, j 颗粒随水流运动。 i 和 j 因流速梯度而相互碰撞,见图 2 7。图 27层流条件下两球形颗粒相碰示意如果 j 颗粒中心位于圆柱体半径为Rij 范围以内,j 颗粒均会与 i 颗粒相撞,则 i 和 j 在单位时间内的碰撞次数取决于 j 颗粒数量浓度 nj 和流过圆柱体的流量 Q(ni 1)。X 轴上方半圆柱体的微元流量为:dQ1dA

8、? u2Rij2z2 ? dz ?u( 2 16)。3欢迎下载精品文档又有: dudzudu ? z(217)uzdzGdu(218)dz将式( 217)和( 218)代入( 2 16)得到:dQ12 Rij2z2 ? G ? z ? dz( 2 19)对( 2 19)进行积分得到:2 GRij3( 2 20)Q12GRij2z2 ? z ? dzRij03在 x 轴下方半圆柱体流量 Q2 与 x 轴上方流量完全一样, 即 Q2Q1,所以流过圆柱体的总流量为:Q Q1Q24 GRij3(221)因此颗粒 i 与 j3的碰撞速率为:NijQ ? n j4 Gnj Rij3(222)3当 i 颗粒

9、数量浓度为 ni ,则碰撞速率为:NijQ ? ni ? n j 4 Gni nj Rij3(223)3r,R r r2r d,且 n n n,则若 i 与 j 颗粒的粒径相等,有 rijijijij上式就为:Nij4 Gn2d 3N0(224)3故同向絮凝速率为:dn2 Gn2d 3(225)dt3若考虑有效碰撞系数,则有:dn2Gn2 d3(226)dt3在公式(215)中,n 和 d 为原水杂质特性, G是控制混凝效果的水力条件,当原水杂质特性一定时,要提高混凝效果,就要控制速度梯度 G。故在絮凝设施的设计中,往往以 G作为重要的控制参数之一。2、紊流条件下的同向絮凝在实际混凝过程中,

10、水流一般均处于紊流状态, 流体内部存在大小不等的涡旋,除前进速度外,还存在纵向和横向脉动速度。层流条件下推导出来的同向絮凝碰撞速率公式( 2 15)中控制混凝效果的水力条件为 G du/dz , G 为速度梯度,其表达式在紊流条件下不适用,甘布( T.R.Camp)和斯泰因(P.C.Stein )仍然利用层流条件下碰撞速率公式的形式,但对 G值表达式进行了变化, 以一个瞬间受剪而扭转的单位体积水流所耗功率计算 G值来替代 Gdu/dz ,G值表达式推导如下:如图 28 所示,在受搅拌的水中取出一微团来分析它在x 方向的受力情况。这一微团瞬间受剪而扭转的过程中,剪力做了扭转功。由于剪应力的作用,

11、在x方向产生切应变。 x 方向即相当于图2 7 中水的运动方向。这一微团在z 方。4欢迎下载精品文档向存在一个速度梯度 du/dz ,同样也与图 27 一致。由于值很小,切应变速度梯度 du/dz 。图中 p 及分别表示微团在 x 方向所受的压力及切应力。图 28速度梯度的推导图示由牛顿内摩擦力公式,剪力为:uG( )z227则扭转功率为:P T ? u ( ? x ? y) ? u? ( x ? y ? z) ? uG? V?GG2? Vz于是单位体积水流所耗功率为:PPG2(2 28)V所以,速度梯度 G值表达式为:GP( )229公式( 229)中,当用机械搅拌时,式中 P 由机械搅拌的

12、功率提供;当用水力搅拌时,功率 P 为水流本身的能量消耗。设被搅拌的水流体积为V,水头损失为 h,则总功率为:Pz Qh PV(230)而 V=QT,代入上式得到:h PTG 2T(231)所以水力搅拌时的速度梯度G值表达式为:。5欢迎下载精品文档Gh(232)T式中,水的重度( kg/m2·s2);h 混凝设备中的水头损失( m); 水的动力粘度( kg/m· s)T 水流在混凝设备中的停留时间( s)公式( 2 29)和(2 32)为著名的甘布公式,公式中 G值反映了能量消耗的概念。以该公式 G 值表达式代替层流条件下的公式中 G du/dz ,则可得到紊流条件下同向絮

13、凝速率:dn2Gn2d 32n2d 3P(233)dt33或为: dn2Gn2 d32n2d 3h(234)dt33T3、局部各向同性紊流理论近年来,有些专家学者认为甘布公式所求 G值直接代入层流公式来求得的紊流条件下的同向絮凝速率在理论上依据不足, 进而直接从紊流理论出发来探讨颗粒碰撞速率。例如,列维奇( Levich )等人根据科尔摩哥罗夫( Kolmogoroff )的局部各向同性紊流理论来推导了同向絮凝速率方程。局部各向同性紊流理论的要点如下:(1)在各向同性紊流中,存在各种尺度不等的涡旋;(2)大涡旋将能量输送给小涡旋,小涡旋又将一部分能量输送给更小的涡旋;(3)小涡旋逐渐增多,水的

14、粘性增强,从而产生能量损耗;(4)当涡旋的尺度与颗粒直径或碰撞半径相近时,才会使颗粒相互碰撞。在物理学中有一个现象:大涡旋减小小涡旋(惯性区)减小更小涡旋(粘性区)湮灭在粘性区涡旋尺度与颗粒粒径 d 相近(即为同一数量级) ,造成颗粒相互碰撞,混凝效果最好。故在絮凝设备中应多增加小涡旋。小涡旋的无规则脉动类似于布朗运动,可得碰撞速率为:N 0 8 dDn 2(235)式中 D 为紊流扩散和布朗扩散系数之和, 在紊流中,布朗扩散远小于紊流扩散, D近似为紊流扩散系数,有:Du(236)u 为脉动流速,由下式表示:u1( 2 37)15设涡旋尺度 d,将式( 236)和( 237)代入( 2 35

15、)得到:。6欢迎下载精品文档N08n2 d 3( 2 38)15式中,单位时间、单位体积流体的有效能耗; 水的运动粘度。该公式与甘布公式相比, 如果令 G,则两式仅是系数不同。P和也非常相似,不同的是P 为平均流速和脉动流速所耗功率,而为脉动流速所耗功率。两者实质比较接近,均为控制混凝效果的重要参数。由于公式( 237)仅适用于粘性区,而实际上水中颗粒尺寸大小不等,且有效功率很难确定,故公式( 2 38)虽然有理论依据,但其应用受到局限。因此仍然沿用甘布公式作为同向絮凝的控制指标。栅条絮凝池中的混凝现象即可用局部各向同性紊流理论来解释。四、 G值、 GT值的含义1、G值增大,碰撞速率增大,则颗

16、粒碰撞次数也增加, G值可作为一种搅拌强度的指标;但 G值太大,絮凝体会破碎。一般控制平均 G值为:(1)混合阶段以异向絮凝为主, 要求将混凝剂快速溶解于水中使胶体脱稳,一般 G7001000s-1 。(2)絮凝阶段以同向絮凝为主,要促使微絮凝体变成粗大絮凝体,又要防止絮凝体破碎,一般 G2070s-1 。2、水流在混凝设备中停留时间 T 越大,颗粒碰撞的次数越多,但 T 太长,经济上不合理,一般控制 T 为:(1)混合阶段 T 1020s,不超过 2min。(2)絮凝阶段 T 1030min。不同的絮凝池设计停留时间不同。3、G值间接反映单位时间颗粒碰撞次数, GT值反映总的碰撞次数,一般控

17、制絮凝池的平均 GT1×1041×105。第五节、混合和絮凝设备一、混合和絮凝的工艺要求1、混合工艺要求在混合阶段,水中杂质颗粒尺寸微小,异向絮凝占主导地位。(1)作用在混合阶段进行剧烈搅拌的目的是使药剂快速均匀地扩散在水中,使胶体脱稳凝聚,产生微絮凝体(微絮凝体d5m )。(2)要求混合要快速剧烈。2、絮凝工艺要求在絮凝阶段,必须借助于机械或水力搅拌进行同向絮凝。(1)作用使微絮凝体通过合适的水力条件变成粗大絮凝体(粗大絮凝体d 0.6mm)。(2)要求。7欢迎下载精品文档1)提供足够的碰撞次数;2)搅拌强调要递减;3)絮凝体不能在絮凝池中沉淀,因此要求流速不能太小。(3

18、)措施1)增大颗粒浓度,即增大n。对低浊度水可投加粘土、增加投矾量等。2)增大颗粒尺寸,即增大d。例如投加高分子助凝剂活化硅酸、PAM等。3)要有适当的速度梯度G,且 G 值要逐渐递减,一般通过控制流速v 来控制 G值递减。一般在絮凝池进口 v0.5 0.6m/s ,在絮凝池出口 v 0.1 0.2m/s 。4)要提供足够的碰撞次数,就要有足够的絮凝时间, T 1030min。5)改善水流状态,即在絮凝池中设置扰流装置,在水中形成脉动流速,提高有效能耗。例如设置栅条、网格、波纹板等。二、混合设备常用混合方式有水力和机械两类。 水力混合简单, 但不能适应流量变化; 机械混合可随流量变化而调节,但

19、机械需维修。1、管式混合管式混合是利用水厂进水管的水流,通过管道或管道配件 ( 弯头、渐缩管、三通等 ) ,也可在管道内设置阻流物,以产生局部阻力使水流发生湍流,从而使水体和药剂混合。设置阻流物的形式很多,常用的有孔板、文氏管、扩散混台器、静态混合器等。如:1)扩散混合器,见图2 9,为孔板混合器加上锥形配药帽所组成。锥形帽顺水流方向的投影面积为进水管总面积的l 4,孔板的孔面积为进水管总面积的 34;2)静态混合器,见图210,是利用在管道内设置多节固定分流板使水流成对分流同时又有交叉和旋涡反向旋转以达到较好的混合效果。图 29管道扩散混合器。8欢迎下载精品文档图 210管道静态混合器2、混

20、合池采用混合池混合有多种形式,如隔板混合池、涡流混合池、穿孔混合池等。(1)隔板混合池,如图 211 所示,利用水体的曲折行进所产生的湍流进行混合。般为设有三块隔板的窄长形水槽。(2)涡流混合池,如图 212 所示,适用于中小型水厂,特别适合于石灰乳的混合。其平面形状呈正方形或圆形, 与此相适应的下部呈倒金字塔形或圆锥形。(3)穿孔混合池,如图213 所示,为设有三块隔板的矩形水槽,板上有3较多的孔眼,以造成较多的涡流。适用于 1000m/h 以下的水厂,不适用于石灰乳或者有较大渣子的药剂混合,以免石灰粒子或渣子堵塞孔眼。图 211隔板混合池3、水泵混合药剂溶液加于水泵吸水管中,通过水泵叶轮高

21、速转动达到混合效果。药剂一般采用重力投加, 为防止空气进入水泵吸水管内, 必须设一个装有浮球阀的水封箱, 对于投加腐蚀性强的药剂应注意避免腐蚀水泵叶轮及管道。 对于泵房距净水构筑物距离较远时不宜采用。4、机械混合机械混合系通过浆板的转动搅拌水体,以达到混合目的。如图2 14 所示。混合机械包括驱动电动机和垂直轴悬挂浆板。浆板有浆式、 推进式、涡流式等。采用较多的为浆式,结构简单易制造,但所供混合功率较小。为加强混合效果,除了设快速旋转桨板外,还可在周壁上设固定挡板。9欢迎下载精品文档图 212涡流混合池图 213穿孔混合池图 214机械混合池。10欢迎下载精品文档表 21混合方式比较三、絮凝设

22、备絮凝池的型式很多,主要有隔板、穿孔旋流、涡流、折板、机械和网格、栅条等。1、隔板絮凝池隔板絮凝池的布置见图 215 和 2 16 所示。利用水流在隔板之间, 水流断面上流速分布不均匀所造成的速度梯度, 使颗粒碰撞达到絮凝目的。 限板絮凝池有往复式和回转式两种。(1)往复式隔板絮凝池是水流沿槽呈 180°转弯,来回往复前进,在转弯处消耗能量较大,有利于颗粒碰撞,但易引起絮粒破碎。(2)回转式隔板絮凝池是水流由中间进入,成 90°转弯,回转向外流出,转弯处能量消耗较拄复式小,有利于避免絮粒破碎,但也减少了碰撞机会。因此,也出现了有利于絮凝的先往复、后回转等组合式的隔板絮凝池。11欢迎下载精品文档图 2 15往复式隔板絮凝池2、穿孔旋流絮凝池穿孔旋流絮凝池是由多个进水窗孔和旋流室串联组成的絮凝池。 水流通过对角交错的孔口,呈多次旋流,达到良好絮凝。如图 217 所示。3、折板絮凝池折板絮凝池的布置见图 218 所式。拆板絮凝池是由隔板巡池发展而来, 有水平和竖流, 但大多布置成竖流式折板絮凝池。 其作用除同隔板絮凝, 增加转折碰撞外,更利用厂板间多次转折或缩放水流形成涡流, 使沿程能量消耗均匀, 较好地絮凝。折板又有同波折板和异波折板等。4、栅条、网格絮凝池栅条、网格絮凝池

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论