




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章第三章 运输问题运输问题一、运输问题及其数学模型二、表上作业法三、运输问题的进一步讨论四、应用举例第三章2312341一、运输问题及其数学模型一、运输问题及其数学模型s2=27s3=19s1=14供应量供应地运价d1=22d2=13d3=12d4=13需求量需求地6753842759106 引例:引例:运输问题网络图第三章0 xxxxxxxxxxxx13xxx12xxx13xxx22xxx19xxxx27xxxx14xxxxs.t.x6x10 x9x5x7x2x4x8x3x5x7x6zmin3433323124232221141312113424143323133222123121113
2、43332312423222114131211343332312423222114131211供应地约束需求地约束一、运输问题及其数学模型一、运输问题及其数学模型第三章运输问题的描述: 设某种物品有m个产地A1,A2,.,Am,各产地的产量分别是a1,a2,.,am;有n个销地B1,B2,.,Bn,各销地的销量分别为b1,b2,.bn。假定从产地Ai(i=1,2,m)向销地出Bj(jl,2,.n)运输单位物品的运价是cij,问怎样调运这些物品才能使总运费最小?一、运输问题及其数学模型一、运输问题及其数学模型第三章运价表 销地产地B1B2Bn产量A1C11C12C1na1x11x12x1nA2C
3、12C22C2na2x21x22x2n.AmC1mC2mCmnamxm1xm2xmn销量b1b2bm一、运输问题及其数学模型一、运输问题及其数学模型第三章产销平衡运输问题的数学模型表示:j xciBA设ijij njmixnjbxmiaxxCzijmijijnjiijminjijij,.,2 , 1;,.,2 , 10,.2 , 1,.2 , 1min1111( )0,ijjiCba其中jiba一、运输问题及其数学模型一、运输问题及其数学模型第三章该模型是一个线性规划模型,可以用单纯形法求解。但是变量数目非常多。如3个产地,4个销地。变量数目会有19个之多。因此应该寻求更简便的解法。为了说明适
4、于求解运输问题的更好的解法,先分析运输问题数学模型的特点。一、运输问题及其数学模型一、运输问题及其数学模型第三章运输问题数学模型的特点:运输问题数学模型的特点:1运输问题有有限最优解运输问题有有限最优解jibaQnjmiQbaxjiij,.2,1;,.,2,1,是一个可行解。同时,目标函数有下界,且不会趋于负无穷。所以,必存在有限最优解。一、运输问题及其数学模型一、运输问题及其数学模型第三章2运输问题约束条件的系数矩阵运输问题约束条件的系数矩阵111.1111.1.1.11.1.1221111mnmnnxxxxxxA =n 行m 行jmiijeeP系数列向量:TijA)0,.,0,1 ,0,.
5、,0,1 ,0,.,0(第i个第m+ j个一、运输问题及其数学模型一、运输问题及其数学模型第三章由此可知,运输问题具有下述特点: (1)约束条件系数矩阵的元素等于0或1; (2)约束条件系数矩阵的每一列有两个非零元素,这对应于每一个变量在前m个约束方程中出现一次,在后n个约束方程中也出现一次;对产销平衡运输问题,除上述两个特点外,还有以下特点:(3)所有结构约束条件都是等式约束;(4)各产地产量之和等于各销地销量之和。 秩 ( A) =m+n-1运输问题的基可行解中应包含m+n-1个基变量.一、运输问题及其数学模型一、运输问题及其数学模型第三章3.运输问题的解运输问题的解(1)解x必须满足模型
6、中的所有约束条件;(2)基变量对应的约束方程组的系数列向量线性无关;(3)解中非零变量xij的个数不能大于(m+n-1)个,原因是运输问题中虽有(m+n)个结构约束条件,但由于总产量等于总销量,故只有(m+n-1)个结构约束条件是线性独立的;(4)为使迭代顺利进行,基变量的个数在迭代过程中保持为 (m+n-1)个。运输问题解的每一个分量,都唯一对应其运输表中的一个格 填有数字的格 或 空格一、运输问题及其数学模型一、运输问题及其数学模型第三章 销地产地B1B2B3B4产量A141241116826A2210391010A38511622148销量814121448下表给出了例下表给出了例1的一
7、个解。的一个解。一、运输问题及其数学模型一、运输问题及其数学模型第三章二、表上作业法二、表上作业法 表上作业法是一种迭代法,迭代步骤为: 1、先按某种规则找出一个初始解(初始调运方案); 2、再对现行解作最优性判别; 3、若这个解不是最优解,就在运输表上对它进行调整改进,得出个新解; 4、再判别,再改进; 5、直至得到运输问题的最优解为止。 迭代过程中得出的所有解都要求是运输问题的基可行解。第三章例1: 销地产地B1B2B3B4产量A141241116A22103910A38511622销量814121448二、表上作业法二、表上作业法第三章 销地产地B1B2B3B4产量A141241116A
8、22103910A38511622销量81412144882101486所以,初始基可行解为:目标函数值Z246二、表上作业法二、表上作业法1、初始基可行解最小元素法、初始基可行解最小元素法第三章在满足约束条件下尽可能的给最左上角的变量最大值. 销地产地B1B2B3B4产量A141241116A22103910A38511622销量8141214488864814所以,初始基可行解为:目标函数值Z3721、初始基可行解西北角法、初始基可行解西北角法二、表上作业法二、表上作业法第三章沃格尔法计算步骤:1) 分别算出各行、各列的罚数。2) 从行、列中选出差额最大者,选择它所在行、列中的最小元素,进
9、行运量调整。3) 对剩余行、列再分别计算各行、列的差额。返回1)、2)。二、表上作业法二、表上作业法1、初始基可行解沃格尔法、初始基可行解沃格尔法第三章 销地产地B1B2B3B4产量A141241116A22103910A38511622销量81412144814所以,初始基可行解为:目标函数值Z244881224二、表上作业法二、表上作业法第三章 销地产地B1B2B3B4产量A141241116A22103910A38511622销量814121448821014861211012-1二、表上作业法二、表上作业法2、解的最优性检验闭回路法、解的最优性检验闭回路法某空格的检验数是以该空格为第一
10、个某空格的检验数是以该空格为第一个顶点,某回路的奇数顶点运价和减去顶点,某回路的奇数顶点运价和减去其偶数顶点运价和。其偶数顶点运价和。第三章原问题设其对偶变量为:njmixnjbxmiaxxCzijmijijnjiijminjijij,.,2 , 1;,.,2 , 10,.2 , 1,.2 , 1min1111),.,.,(2121nmvvvuuuY 2、解的最优性检验对偶变量法、解的最优性检验对偶变量法二、表上作业法二、表上作业法第三章对偶问题:考虑原问题变量xj的检验数为:符号不限,.2 , 1,.2 , 1max11jiijjiminjjjiivunjmicvuvbuazjjjBjjjj
11、YPcPBCczc1jmiijeeP二、表上作业法二、表上作业法第三章假设已得到一个基可行解,其基变量为:则有:ssjijijixxx,.,2211s=m+n-1ssssjijijijijijicvucvucvu.22221111则运输问题变量xij的检验数为:)(),.,.,(2121jiijijnmijijijijijijvucPvvvuuucYPczc二、表上作业法二、表上作业法第三章方程组有m+n-1个方程。因为运输表中每行和每列均有基变量,因此上面方程组含有全部m+n个对偶变量。故解不唯一,其解称为位势。若上述方程的某组解满足对偶问题的所有条件,即:此时,原问题与对偶问题均可行,故达
12、到最优。其解分别为:0)(jiijijvucTjijijiTNBssxxxXXX)0,.,0 , 0 ,.,(),(2211二、表上作业法二、表上作业法第三章例:例: 销地产地B1B2B3B4产量UiA141241116A22103910A38511622销量814121448Vj82101486二、表上作业法二、表上作业法第三章 改进的方法是在运输表中找出这个空格对应的闭回路,在满足所有约束条件的前提下,使xij尽量增大并相应调整此闭回路上其它顶点的运输量,以得到另一个更好的基可行解。3、解的改进闭回路调整法、解的改进闭回路调整法二、表上作业法二、表上作业法第三章 解改进的具体步骤解改进的具
13、体步骤(1)以xij为换入变量,找出它在运输表中的闭回路;(2)以空格(Ai,Bj)为第一个奇数顶点,沿闭回路的顺(或逆)时针方向前进,对闭回路上的顶点依次编号;(3)在闭回路上的所有偶数顶点中,找出运输量最小的顶点(格子),以该格中的变量为换出变量;(4)以换出变量的运输量为调整量,将该闭回路上所有奇数顶点处的运输量都增加这一数值,所有偶数顶点处的运输量都减去这一数值,从而得出一新的运输方案。该运输方案的总运费比原运输方案减少,改变量等于换出变量的检验数。 然后,再对得到的新解进行最优性检验,加不是最优解,就重复以上步骤继续进行调整,一直到得出最优解为止。二、表上作业法二、表上作业法第三章
14、销地产地B1B2B3B4产量A141241116A22103910A38511622销量814121448例:821014861211012-1二、表上作业法二、表上作业法第三章 销地产地B1B2B3B4产量A141241116A22103910A38511622销量814121448例:821214840229121由于所有非基变量的检验数全非负,故这个解为最优解。又由于非基变量有零检验数,所以有无穷多最优解。二、表上作业法二、表上作业法第三章练习题练习题 销地产地B1B2B3B4产量A167531414A28427278136A35910619613销量22131213二、表上作业法二、表
15、上作业法练习题练习题第三章练习题练习题 销地产地B1B2B3B4产量A167531414557A284272781369A35910619-11-3613销量22131213二、表上作业法二、表上作业法练习题练习题第三章练习题练习题 销地产地B1B2B3B4产量A16753141455-4A284272721312-2A35910619681113销量22131213二、表上作业法二、表上作业法第三章 销地产地B1B2B3B4产量A167531415513A2842727213122A35910619198114销量22131213 销地产地B1B2B3B4产量A1675314113A2842
16、72721312A3591061919销量22131213答案答案二、表上作业法二、表上作业法第三章1)若运输问题的某一基可行解有几个非基变量的检验数均为负,在继续进行迭代时,取它们中的任一变量为换入变量均可使目标函数值得到改善,但通常取小于零的检验数中最小者对应的变量为换入变量。 2)当迭代到运输问题的最优解时,如果有某非基变量的检验数等于零,则说明该运输问题有多重(无穷多)最优解。 4、需要说明的几个问题、需要说明的几个问题二、表上作业法二、表上作业法第三章3)(二 )退化 某一基变量 的值为0初始解 在确定初始解的供需关系时,若在确定(i, j ) 的数字时,要划去第i行,第j列。为使在
17、产销平衡表上有m+n-1个数字格,须在第i 行或j列中 ( 非i,j ) 选一数字格为0。退化解 闭回路中有( - )标记中有两个或以上相等的最小数。调整后出现退化解,必须在一数字格中填入0,以表明其为基变量。二、表上作业法二、表上作业法第三章三、运输问题的进一步讨论三、运输问题的进一步讨论 上一节讲述的运输问题的算法,是以总产量等于总销量(产销平衡)为前提的。实际上,在很多运输问题中,总产量不等于总销量。 第三章0,ijjiCba其中njmixnjbxmiaxxCzijmijijnjiijminjijij1 ,10,.2 , 1,.2 , 1min1111( )表上作业法 以产销平衡 为前提
18、。jiba1、产销不平衡的运输问题、产销不平衡的运输问题三、运输问题的进一步讨论三、运输问题的进一步讨论第三章2321341s2=27s3=19d1=22d2=13d3=12d4=13s1=14供应量供应地运价需求量需求地6753842759106 例:假设供应量大于需求量例:假设供应量大于需求量+55d5=5 假想销地0 0 0s3=24三、运输问题的进一步讨论三、运输问题的进一步讨论第三章0,.2 , 1,.2 , 1min1111ijmijijnjiijminjijijxnjbxmiaxxCzjiba 产大于销 产销不平衡产销平衡模型:三、运输问题的进一步讨论三、运输问题的进一步讨论第三
19、章设 为Ai的贮存量。1, nixmiaxxxinjijninjij,.,2 , 1111,1jininijmiijbaxnjbx11,1,.,2 , 1将多余物原地贮存。令:101njnjCCijij三、运输问题的进一步讨论三、运输问题的进一步讨论第三章111njjmiiba理解: 产 销 假想有一销地 j=n+1 销量为 运价 njjmiiba1101,niC01,.2, 1,.2, 1min111111 ijmijijnjiijminjijijxnjbxmiaxxCz模型:三、运输问题的进一步讨论三、运输问题的进一步讨论第三章 销地产地B1B2BnBn+1 (贮存) 产量A1C11C12
20、C1n0a1x11x12x1nx1,n+1A2C12C22C2n0a2x21x22x2nx2 ,n+1.AmC1mC2mCmn0amxm1xm2xmnxm ,n+1销量b1b2bma- b三、运输问题的进一步讨论三、运输问题的进一步讨论第三章例: 某市有三个造纸厂A1,A2,A3,其纸的产量分别为8,5和9个单位,有4个集中用户B1,B2,B3,B4,其需用量分别为4,3,5和6个单位。由各造纸厂到各用户的单位运价如表315所示,请确定总运费最少的调运方案。 销地产地B1B2B3B4产量A1312348A2112595A367159销量4356三、运输问题的进一步讨论三、运输问题的进一步讨论第
21、三章 解:由于总产量22大于总销量18,故本问题是个产销不平衡运输问题。增加一假想销地B5,用表上作业法求解。 销地产地B1B2B3B4B5(贮存) 产量A13123408A21125905A3671509销量43564三、运输问题的进一步讨论三、运输问题的进一步讨论第三章 销地产地B1B2B3B4B5(贮存)产量A13123408418634A211259050302-8A3671509-2954-4销量43564 销地产地B1B2B3B4B5(贮存)产量A1312340844A21125905032A367150954销量43564三、运输问题的进一步讨论三、运输问题的进一步讨论第三章2、
22、有转运的运输问题、有转运的运输问题在以上讨论中,假定物品由产地直接运送到销售目的地,不经中间转运。但是,常常会遇到这种情形:需先将物品由产地运列某个中间转运站(可能是另外的产地、销地或中间转运仓库),然后再转运到销售目的地。有时,经转运比直接运到目的地更为经济。因此,在决定运输方案时有必要把转运也考虑进去。三、运输问题的进一步讨论三、运输问题的进一步讨论第三章2、有转运的运输问题、有转运的运输问题第三章转运量 t1t2t3t4t5t6t7A2A3A1a2=27a3=19a1=14供应量需求量B2B3B4B1a5=0a6=0a4=0a7=0A2A3A1b4=22b5=13b6=12b7=13B2
23、B3B4B1b1=0b2=0b3=0 xij转运量 t1t2t3t4t5t6t7第三章假设单位运转费用为ti,则线性规划模型为:7711767623232121171713131212.mintctcxcxcxcxcxcxcz717171iiijiiijjijijtcxc7,.,2 , 1, 022144746454342414171615141312144746454342411171615141312jixtxxxxxxtxxxxxxtxxxxxxtxxxxxxij三、运输问题的进一步讨论三、运输问题的进一步讨论第三章7711767623232121171713131212.mintctc
24、xcxcxcxcxcxcz717171iiijiiijjijijtcxc7,.,2 , 1, 022144746454342414171615141312144746454342411171615141312jixtxxxxxxtxxxxxxtxxxxxxtxxxxxxij141716151413121xxxxxxt141716151413121QxxxxxxtQ1417161514131211QxxxxxxxQxxxxxxxQxxxxxxxQxxxxxxx22746454443424147161514131211147464544434241717171iiijijijQcxciiicx的系
25、数为注意717171)(iiiijiiijjijijxQcxc第二项为常数,对求解结果无影响,可去掉。第三章7171minijijijxcz1417161514131211QxxxxxxxQxxxxxxxQxxxxxxxQxxxxxxx227464544434241471615141312111474645444342417,.,2 , 1, 0jixij模型变为下列形式:这是一个产销平衡运输问题的数学模型。可以列出其运价表,用表上作业法求解。 销地产地A1A2A3B1B2B3B4产量A1A2A3B1B2B3B4销量其运价表形式如下(注意其中对角线上的运价值):第三章建立一般意义上的数学模型,
26、设:建立一般意义上的数学模型,设:ai:第:第i个产地的产量个产地的产量(净供应量净供应量);bj:第:第j个销地的销量个销地的销量(净需要量净需要量);xij:由第:由第i个发送地运到第个发送地运到第j个接收地的物品数量;个接收地的物品数量;cij:由第:由第i个发送地到第个发送地到第j个接收地的单位运价,个接收地的单位运价,ti:第:第i个地点转运物品的数量;个地点转运物品的数量;ci:第:第i个地点转运单位物品的费用。个地点转运单位物品的费用。 将产地和销地统一编号,并把产地排在前面。销地排在将产地和销地统一编号,并把产地排在前面。销地排在后面,则有:后面,则有:第三章nmiiinmji
27、inmijjijijtcxcz111min令:令:iiitQxjjjtQx建立数学模型:建立数学模型:)(,.,2 , 1, 0,.,2, 1,.,.,.,2 , 1,.,.,.,2, 1,.,.,.,2 , 1,.,., 1, 121, 1, 121,1,1,21,1,1,21jinmjixnmmmitbxxxxxmjtxxxxxnmmmitxxxxxmitaxxxxxijjjjnmjjjjjjjjnmjjjjjjinmiiiiiiiiinmiiiiiii第三章注:所有i=j,cij=-ci第三章第三章a1a5b1b5Qc1c5c11c55 例:如图所示是一个运输系统,它包括二个产地(例:如
28、图所示是一个运输系统,它包括二个产地(1和和2)、二)、二个销地个销地(4和和5)及一个中间转运站及一个中间转运站(3),各产地的产量和各销地的,各产地的产量和各销地的销量用相应节点处箭线旁的数字表示,节点联线上的数字表示销量用相应节点处箭线旁的数字表示,节点联线上的数字表示其间的运输单价,节点旁的数字为该地的转运单价,试确定最其间的运输单价,节点旁的数字为该地的转运单价,试确定最优运输方案。优运输方案。第三章 销地产地A1A2B3C4C5产量A1A2B3C4C5销量第三章 销地产地A1A2B3C4C5产量A1-4532M60A25-12M490B332-35550C42M5-3650C5M4
29、56-550销量5050508070第三章运用最小元素法,求初始运输方案,如下表:最优运输方案如下表:302020第三章一、回答问题1、在运输问题数学模型中,为什么模型的(m+n)个约束中最多只有(m+n-1)个是独立的?2试述用最小元素法确定运输问题的初始基可行解的基本思路。3如何用闭回路法求检验数?4 沃格尔法的基本思想是什么?什么是罚数?5在解的改进过程中,如何确定调整量?6如何把一个产销不平衡的运输问题(含产大于销和销大于产)转化为产销平衡的运输问题。练习题练习题第三章二、判断下列说法是否正确(1)运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,
30、有无穷多最优解,无界解,无可行解;(2)在运输问题中,只要给出一组合(m+n-1)个非零的xij,且满足xij=ai, xij=bj,就可以作为一个初始基可行解;(3)表上作业法实质上就是求解运输问题的单纯形法;(4)按最小元素法(或伏格尔法)给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路;练习题练习题第三章(5)如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k,最优调运方案将不会发生变化;(6)如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k,最优调运方案将不会发生变化;(7)当所有产地产量和销地的销量均为整数值时,运输问题的最优解也为整数
31、值1,2,6不对练习题练习题第三章三、用位势法(对偶变量法)求其检验数。三、用位势法(对偶变量法)求其检验数。练习题练习题第三章四、运用举例四、运用举例例 1 、某飞机制造厂生产一种民用喷气式飞机,生产的最后阶段是制造喷气发动机,以及把发动机安装到已完成的飞机骨架上(一种很快的操作)。为了不误合同规定的交货期,第一.二.三.四月必须安装发动机的台数分别为:10 ,15, 25 ,20。但受生产能力等条件的限制,这些月份的最高生产台数分别为:25,35 ,30 , 10。每月单台发动机的存储费用为1.5万元。已知一、二、三、四月份的单台生产费用各为:108 、111、 110、113万元。试安排
32、这四个月的生产计划,使生产费用和存储费用之和最小。 1)建立此问题的一般LP模型。 2)把此问题作为运输问题来处理,试建立相应的运输表格。 3)求此“运输问题”的最优解。第三章 解:1)设xi表示第i个月生产发动机的台数,yi表示第个月的存储台数,则一般LP模型为:0,1030352570502510)(5 . 1113110111108min43214432133212211143214321iiyxxxxxyxxxxyxxxyxxyxyyyyxxxx四、运用举例四、运用举例第三章个月发动机的安装。第收点个月发动机的生产。第设发点jjii、)2(用之和。月的单台发动机存储费存储到第月生产第个
33、月的单台生产费用与第数。个月安装的发动机的台个月生产供第第j、iicjixijij 由于不能缺货,并考虑到是不平衡问题(虚设收点5)建立如下运输表格四、运用举例四、运用举例第三章:计算得最优生产安排为10410203525101014321最小费用为: w*=7730(万元)123451108109.5111112.50252M111112.51140353MM110111.50304MMM1130101015252030四、运用举例四、运用举例第三章例2 某航运公司承担六个港口城市A.B.C.D.E.F的四条固定航线的物资运输任务。已知各条航线的起点、终点城市及每天航班数见表:航线起点城市终点城市每天航线1ED32BC23AF14DB1每条航线使用相同型号的船只,各城市间的航程天数如表:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 德国代际协议书
- 职业技能训练师岗位工艺技术规程
- 协议书离婚去哪
- 2025最正规的租赁合同
- 2026届湖北省天门市数学九年级第一学期期末质量检测模拟试题含解析
- 2026届河北省邢台市宁晋县数学九上期末联考模拟试题含解析
- 在线办公行业报告:远程办公需求与市场前景分析
- 山东省安丘市二中学2026届数学七上期末监测试题含解析
- 2026届江苏省南京溧水区数学七上期末质量检测模拟试题含解析
- 邮储银行渭南市华阴市2025秋招笔试经济学专练及答案
- DB2303T 021-2024柞蚕脓病防治技术规程
- 煤矿事故汇报程序
- 化工联锁知识课件
- 空白个人简历表格模板
- 砂场财务管理制度
- 拼多多“多多买菜”网格仓的加盟商管理
- 高等数学(经济类)第5版课件:数列的极限
- 老年病人误吸预防及护理
- 人教版(2024)七年级地理期末复习必背考点提纲
- 《多能源耦合供热系统》
- 安徽省宣城市2023-2024学年高二上学期期末考试 英语 含答案
评论
0/150
提交评论