湘教版九年级上册数学3.5相似三角形的应用 ppt课件_第1页
湘教版九年级上册数学3.5相似三角形的应用 ppt课件_第2页
湘教版九年级上册数学3.5相似三角形的应用 ppt课件_第3页
湘教版九年级上册数学3.5相似三角形的应用 ppt课件_第4页
湘教版九年级上册数学3.5相似三角形的应用 ppt课件_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.53.5类似三角形的运用类似三角形的运用复习提问复习提问1、我们曾经学习的类似三角形的断定方、我们曾经学习的类似三角形的断定方法有哪些?法有哪些?2、我们曾经学习的类似三角形的性质有、我们曾经学习的类似三角形的性质有哪些?哪些?如图:如图:A、B两点位于一个池塘的两端,小张想丈两点位于一个池塘的两端,小张想丈量出量出A,B间的间隔,但由于受条件限制无法直接间的间隔,但由于受条件限制无法直接丈量,他能帮他想出一个可行的丈量方法吗?他丈量,他能帮他想出一个可行的丈量方法吗?他能想出几种方法?能想出几种方法?构造全等三角形法构造全等三角形法DEC.ACCDBCCE,动脑筋:动脑筋:AB探求新知探

2、求新知如图:如图:A、B两点位于一个池塘的两端,小张想丈两点位于一个池塘的两端,小张想丈量出量出A,B间的间隔,但由于受条件限制无法直接间的间隔,但由于受条件限制无法直接丈量,他能帮他想出一个可行的丈量方法吗?他丈量,他能帮他想出一个可行的丈量方法吗?他能想出几种方法?能想出几种方法?构造中位线法构造中位线法CDE.CDADCEBE,AB探求新知探求新知动脑筋:动脑筋:如图:如图:A、B两点位于一个池塘的两端,小张想丈两点位于一个池塘的两端,小张想丈量出量出A,B间的间隔,但由于受条件限制无法直接间的间隔,但由于受条件限制无法直接丈量,他能帮他想出一个可行的丈量方法吗?他丈量,他能帮他想出一个

3、可行的丈量方法吗?他能想出几种方法?能想出几种方法?构造类似三角形法构造类似三角形法CDE250ACBCDEmDCECAB如果,且测得,则 , 两点间的距离为多少?ACBCkDCECAB探求新知探求新知动脑筋:动脑筋:测距的方法测距的方法 丈量不能到达两点间的间隔,常构丈量不能到达两点间的间隔,常构造类似三角形求解。造类似三角形求解。 结论结论?在一个有太阳光线的上午,给他一根竹杆,在一个有太阳光线的上午,给他一根竹杆,一把皮尺,他能利用所学知识来测出大楼高吗一把皮尺,他能利用所学知识来测出大楼高吗? ?皮尺皮尺竹杆竹杆?同一时辰,物体的高度与影长有有什么关系同一时辰,物体的高度与影长有有什么

4、关系? ?利用阳光下的影子利用阳光下的影子太阳光线可以看成是平行光线太阳光线可以看成是平行光线了解平行光线了解平行光线 自无穷远处发的光相互平行地向前行自无穷远处发的光相互平行地向前行进,称平行光。自然界中最规范的平行光进,称平行光。自然界中最规范的平行光是太阳光。是太阳光。 甲甲乙乙如何运用如何运用“三角形的类似知识来阐明三角形的类似知识来阐明“平行光线平行光线的照射下,同一时辰物高与影长成正比?的照射下,同一时辰物高与影长成正比?ABCDEF选择同一时辰丈量选择同一时辰丈量ABBCDEEFABCDEFABDEBCEF图中的图中的ABC与与DEF类似吗?类似吗?为什么?为什么?甲乙物高物影长

5、甲高乙影长36m4.5m7.2m?解解:设高楼的高度为设高楼的高度为x米,那么米,那么4.57.236x,答答: :大楼高大楼高22.522.5米米. .22.5x 解得知同一时辰物体的高度与影长成正比,在某一时辰,知同一时辰物体的高度与影长成正比,在某一时辰,测得一高为测得一高为4.5米的竹竿的影长为米的竹竿的影长为7.2米,某一高楼的影米,某一高楼的影长为长为36米米,那么高楼的高度是多少米那么高楼的高度是多少米?给他一根竹杆,一把皮尺,给他一根竹杆,一把皮尺, 他能利用他能利用所学知识来测出楼高吗所学知识来测出楼高吗? ?皮尺皮尺竹杆竹杆需求丈量出哪些需求丈量出哪些数据就可以计算数据就可

6、以计算出大楼的高度出大楼的高度? ?图中有类似三角图中有类似三角形吗?形吗?假设假设EF=4.5m,BF=2m,AB=1.5m,BD=12m,那么大楼那么大楼CD的的高为多少高为多少m?利用标杆利用标杆CDABGHEF标杆1.5m2m12m4.5m怎样构造怎样构造类似三角形?类似三角形?解:过解:过A点作点作AGCD于于G,交,交EF于于H点,点,那么四边形那么四边形ABDG,四边形,四边形ABFH均为矩形,均为矩形,FH=DG=AB=1.5m, AH=BF=2m,EH=EF-FH=4.5m-1.5m=3m,由题意知由题意知EFBD,CD BD,EHCG,AEHACG,EHAHCGAG,321

7、2CG即18CGm解得, 18 1.519.5.CDCGDGm假设测得标杆假设测得标杆EF长长4.5m,人与标杆的间隔,人与标杆的间隔BF长长2m,人的目,人的目高高AB是是1.5m,人与大楼的间隔,人与大楼的间隔BD为为12m,那么大楼,那么大楼CD的高的高为多少为多少m?CDABGEF标杆2m12m4.5mHAG=BD=12m,1.5m?给他一面平面镜,一把皮尺,给他一面平面镜,一把皮尺, 他能利他能利用所学知识来测出楼高吗用所学知识来测出楼高吗? ?皮尺皮尺平面镜利用平面镜反射利用平面镜反射1 234CD需求丈量出哪些需求丈量出哪些数据就可以计算数据就可以计算出大楼的高度出大楼的高度?

8、?F图中的图中的ABE与与CDE类似吗?类似吗?为什么?为什么?E平面镜AB测高的方法测高的方法 丈量不能到达顶部的物体的高丈量不能到达顶部的物体的高度,通常用影子丈量法、标杆丈量法或度,通常用影子丈量法、标杆丈量法或平面镜丈量法,经过构造类似三角形,平面镜丈量法,经过构造类似三角形,利用类似三角形对应边成比例来求解。利用类似三角形对应边成比例来求解。结论结论OABBA1、在用步枪瞄准靶心时,要使眼睛、在用步枪瞄准靶心时,要使眼睛(O)、准星、准星(A)、靶、靶心点心点(B)在同一条直线上在同一条直线上.在射击时,李明由于有细微的在射击时,李明由于有细微的抖动,致使准星抖动,致使准星A偏离到偏

9、离到A,如下图,知,如下图,知OA=0.2m,OB=50m,AA=0.0005m,求李明射击到的点,求李明射击到的点B偏离靶偏离靶心点心点B的长度的长度BB(近似地以为近似地以为AABB),解:AABBOAAOBB,OAAAOBBB,0.20.000550BB即,0.125 .BBm解得0.125 .BBBBm答:李明射击到的点偏离靶心点 的长度为小试牛刀小试牛刀2.大运河的两岸有一段是平行的,为了估算其运河的大运河的两岸有一段是平行的,为了估算其运河的宽度,我们可以在对岸选定一个目的作为点宽度,我们可以在对岸选定一个目的作为点A,再在,再在运河的这一边选点运河的这一边选点B、C,使,使ABB

10、C,然后再选点,然后再选点E,使使ECBC,用视野确定,用视野确定BC和和AE的交点为的交点为D。假设测。假设测得得BD=120m,DC=60m,EC=50m,求出大运河的大,求出大运河的大致宽度致宽度AB。ABEDC解:解:ADB=EDC, ABC=ECD=90 ABDECD 1205010060ABBDECCDBDECABmCD,解得答:大运河的大致宽度答:大运河的大致宽度AB是是100m.乘胜追击乘胜追击3、某同窗想利用树影丈量树高、某同窗想利用树影丈量树高.他在某一时辰测得小树高为他在某一时辰测得小树高为1.5米时,其影长为米时,其影长为1.2米,当他丈量教学楼旁的一棵大树影米,当他丈

11、量教学楼旁的一棵大树影长时,因大树接近教学楼,有一部分影子在墙上长时,因大树接近教学楼,有一部分影子在墙上.经丈量,经丈量,地面部分影长为地面部分影长为6.4米,墙上影长为米,墙上影长为1.4米,那么这棵大树高米,那么这棵大树高多少米多少米?ED6.46.41.2?1.51.4ABc解:作解:作DEAB于于E,那么那么BECD1.4米,得米,得AE=8,AB=8+1.4=9.4米米.1.51.26.4AE物体的影长不等于地上的部分加上墙上的部分物体的影长不等于地上的部分加上墙上的部分更上一层楼更上一层楼3、某同窗想利用树影丈量树高、某同窗想利用树影丈量树高.他在某一时辰测得小树高为他在某一时辰

12、测得小树高为1.5米时,其影长为米时,其影长为1.2米,当他丈量教学楼旁的一棵大树影米,当他丈量教学楼旁的一棵大树影长时,因大树接近教学楼,有一部分影子在墙上长时,因大树接近教学楼,有一部分影子在墙上.经丈量,经丈量,地面部分影长为地面部分影长为6.4米,墙上影长为米,墙上影长为1.4米,那么这棵大树高米,那么这棵大树高多少米多少米?D6.46.41.2?1.51.4ABC解:延伸解:延伸AD交地面于交地面于E,那,那么么1.51.2DCCE,更上一层楼更上一层楼E1.51.41.2CE即,1.12CE 解得米,6.4 1.127.52BEBCCE米,1.51.2ABBE,1.57.521.2AB即,9.4AB 解得米.2 2 测高测高 丈量不能到达两点间的间隔丈量不能到达两点间的间隔,常构造类似三角形求解。常构造类似三角形求解。不能直接运用皮尺或刻度尺量的不能直接运用皮尺或刻度尺量的不能直接丈量的两点间的间隔不能直接丈量的两点间的间隔 丈量不能到达顶部的物体的高度,通常用影子丈丈量不能到达顶部的物体的高度,通常用影子丈量法或标杆丈量法或平面镜丈量法,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论