矩阵分析第一章ppt课件_第1页
矩阵分析第一章ppt课件_第2页
矩阵分析第一章ppt课件_第3页
矩阵分析第一章ppt课件_第4页
矩阵分析第一章ppt课件_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、矩阵分析矩阵分析 欢迎大家( )( );( )( ),XAtXBt UYCtXDt U其中( )U t为l维输入变量,( )X tn维形状向量,为矩阵实际的简单运用一:矩阵在线性系统与多变量控制中的运用线性系统的形状空间性方程为第一章第一章 线性空间和线性映射线性空间和线性映射分别为分别为维输出向量,矩阵为m型矩阵且均为时间型矩阵且均为时间t的函数矩阵。定义:假设上述方程中的矩阵 都是常数矩阵,那么称该系统是线性定常的。其形状空间形方程为 思索一个线性定常系统 XAXBUYCXDU)(tY)(),(),(),(tDtCtBtADCBA,XAXBUYCXDU定义:对于上述系统,假设从形状空间中的

2、恣意一点开场,可以找到一个输入 ,在有限的时间内将形状变量驱动到原点,那么称该系统是可控的;否那么,称该系统是不可控的。定义:对于上述系统,假设在任一时辰的形状可以由从这一时辰开场的一个有限时间间隔上对输入维零下的输出的观测来决议,那么称该系统是可观测的;否那么,称该系统是不可观测的。)(tn我们首先以单输入单输出系统为例我们首先以单输入单输出系统为例 。思索系统下面的单输入单输出系统:思索系统下面的单输入单输出系统:TXAXbuYc X其中其中 b 和和 是是 n维矢量,维矢量, A是是 矩阵,矩阵, cU及及 Y是标量。是标量。定理:定理: 上面的单输入单输出系统是可控的充分必要上面的单输

3、入单输出系统是可控的充分必要条件是可控性判别矩阵条件是可控性判别矩阵nn1( ,)nQbbAb是可逆非奇特矩阵。是可逆非奇特矩阵。例例 1:设:设0101001 ,20003Ab 由于矩阵由于矩阵2123230300bAbA b 是可逆矩阵,所以相应的系统是可控的。是可逆矩阵,所以相应的系统是可控的。例例 2:设:设0000100 ,10101Ab 由于矩阵由于矩阵2000100110bAbA b 是不可逆奇特矩阵,所以相应的系统是不可控的。是不可逆奇特矩阵,所以相应的系统是不可控的。定理:定理: 上面的单输入单输出系统是可观测的充分必要上面的单输入单输出系统是可观测的充分必要条件是可观测性判

4、别矩阵条件是可观测性判别矩阵1TTTnccVc A是可逆非奇特矩阵。是可逆非奇特矩阵。例例 3:设:设1 1,121 1TAc由于矩阵由于矩阵1233TTcc A是可逆矩阵,所以相应的系统是可观测的。是可逆矩阵,所以相应的系统是可观测的。例例 4:设:设01003002,100000010200TAc由于矩阵由于矩阵231000010030020100TTTTcc Ac Ac A是不可逆奇特矩阵,所以相应的系统是不可观测的。是不可逆奇特矩阵,所以相应的系统是不可观测的。我们再以多输入多输出系统为例我们再以多输入多输出系统为例 。思索系统下面的多输入多输出系统:思索系统下面的多输入多输出系统:X

5、AXBuYCX定理:定理: 上面的多输入多输出系统是可控制的充分必要上面的多输入多输出系统是可控制的充分必要条件是可控制性判别矩阵条件是可控制性判别矩阵1( ,)nQBBAB是行满秩的。该系统是可观测的充分必要条件是可观测是行满秩的。该系统是可观测的充分必要条件是可观测性判别矩阵性判别矩阵1nCCAVCA是列满秩的。是列满秩的。0111,1011AB由于矩阵由于矩阵1 1 1111 1 1BAB是行满秩的,所以相应的系统是可控制的。是行满秩的,所以相应的系统是可控制的。例例 5:设:设二二 矩阵实际在生物数学中的运用矩阵实际在生物数学中的运用在化的花瓣中存在一种特殊的生物方式。几乎一切在化的花

6、瓣中存在一种特殊的生物方式。几乎一切花,其花瓣数都是一种有规律的级数。例如百合花花,其花瓣数都是一种有规律的级数。例如百合花的花瓣有的花瓣有3瓣;毛茛属的植物有瓣;毛茛属的植物有5瓣花;许多翠雀属瓣花;许多翠雀属的植物有的植物有8瓣花;万寿菊的花瓣有瓣花;万寿菊的花瓣有13瓣;紫菀属的植瓣;紫菀属的植物有物有21瓣花;大多数的雏菊有瓣花;大多数的雏菊有34,55,89 瓣花。瓣花。另外,在向日葵的花盘内葵花籽的螺旋式陈列中也另外,在向日葵的花盘内葵花籽的螺旋式陈列中也可以发现类似的陈列方式,同时植物的叶序中也存可以发现类似的陈列方式,同时植物的叶序中也存在此种景象。这就是著名的在此种景象。这就

7、是著名的Fibonacci级数方式。我级数方式。我们称下面的数列们称下面的数列为为Fibonacci级数。它满足下述递推公式:级数。它满足下述递推公式: 0,1,1,2,3,5,8,13,21,34,55,以及初始条件:以及初始条件: 试求该数列的通项试求该数列的通项公式,并且求出极限公式,并且求出极限 21,0,1,2,3,kkkfffk010,1.ff1lim.kkkff解:设解:设1,0,1,2,kkkfUkf由于由于 ,所以,所以 21kkkfff令令2111110kkkkffff1110A那么我们有那么我们有10,kkkkUAUUA U于是我们为了求于是我们为了求Fibonacci数

8、列的通项公式只需求出数列的通项公式只需求出 kA 即可,我们利用即可,我们利用 的类似规范形来化简的类似规范形来化简 的计算。的计算。 AkA 的特征多项式为的特征多项式为 , 它的它的两个特征根为:两个特征根为:A21IA1211(15),(15),22由此可以看出由此可以看出 可以对角化。解齐次线性方程组可以对角化。解齐次线性方程组A1(15)02IA X可以得到它的一个根底解系:可以得到它的一个根底解系:111(15)211同理可得同理可得1(15)02IA X一个根底解系是一个根底解系是221(15)211令令1211U那么那么11200UAU从而从而1112122000110kkkA

9、UU112122111211111155kkkk由递推公式以及初始条件可得由递推公式以及初始条件可得110kkkfAf 比较上式的第二个分量得比较上式的第二个分量得这就是著名的这就是著名的Fibonacci数列通项公式,容数列通项公式,容易计算出:易计算出:121()511515()()225kkkkkf11115lim0.6182kkkff 这个数在最优化中有重要的运用,在最优化这个数在最优化中有重要的运用,在最优化中我们经常运用这个数来迅速缩短搜索区间,以便中我们经常运用这个数来迅速缩短搜索区间,以便找出最优点,这种方法也常称其为黄金分割法。找出最优点,这种方法也常称其为黄金分割法。0.6

10、18第一节第一节 线性空间线性空间一:一: 线性空间的定义与例子线性空间的定义与例子定义定义 设设 是一个非空的集合,是一个非空的集合, 是一个数域,是一个数域,在集和在集和 中定义两种代数运算中定义两种代数运算, 一种是加法运算一种是加法运算, 用用 来表示来表示; 另一种是数乘运算另一种是数乘运算, 用用 来表示来表示, 并且并且这两种运算满足以下八条运算律:这两种运算满足以下八条运算律:VFV1 加法交换律加法交换律2 加法结合律加法结合律 ()()3 零元素零元素 在在 中存在一个元素中存在一个元素 ,使得对,使得对于恣意的于恣意的 都有都有00VV4 负元素负元素 对于对于 中的恣意

11、元素中的恣意元素 都存都存在一个元素在一个元素 使得使得 V01 5 ()()k lkl6 7 ()klkl8 ()kkk称这样的称这样的 为数域为数域 上的线性空间。上的线性空间。VF例例 1 全体实函数集合全体实函数集合 构成实数域构成实数域 上的上的线性空间。线性空间。RRR例例 2 复数域复数域 上的全体上的全体 型矩阵构成型矩阵构成的集合的集合 为为 上的线性空间。上的线性空间。CmnCm nm mC 例例 3 实数域实数域 上全体次数小于或等于上全体次数小于或等于 的多项的多项式集合式集合 构成实数域构成实数域 上的线性空间上的线性空间Rn nR xR例例 4 全体正的实数全体正的

12、实数 在下面的加法与数乘的在下面的加法与数乘的定义下也构成线性空间:定义下也构成线性空间:R:,:,kababa bRkaaa kR 例例 5 表示实数域表示实数域 上的全体无限序列组成的上的全体无限序列组成的的集合。即的集合。即RR123, ,1,2,3,iaFRa a ai在在 中定义加法与数乘:中定义加法与数乘: 那么那么 为实数域为实数域 上的一个线性空间。上的一个线性空间。123123112233123123 , , ,a a ab b bab ab abk a a aka ka ka RRR例例 6 在在 中满足中满足Cauchy条件的无限序列组成的条件的无限序列组成的子集合也构成

13、子集合也构成 上的线性空间。上的线性空间。Cauchy条件是:条件是: 使得对于使得对于 都有都有0,0,N ,m nNmnaaRR例例7 在在 中满足中满足Hilbert条件的无限序列组成的条件的无限序列组成的子集合不构成子集合不构成 上的线性空间。上的线性空间。Hilbert条件是:条件是:级数级数 收敛收敛例例8 在在 中有界的无限序列组成的子集也构成中有界的无限序列组成的子集也构成 上的线性空间。一个无限序列上的线性空间。一个无限序列 称为有界的,假设存在一个实数称为有界的,假设存在一个实数 , 使得使得21nnaRR123,a a a r,1,2,iari RR二:二: 线性空间的根

14、本概念及其性质线性空间的根本概念及其性质定义定义: 线性组合;线性表出;线性相关;线性无关线性组合;线性表出;线性相关;线性无关;向量组的极大线性无关组;向量组的秩;向量组的极大线性无关组;向量组的秩根本性质:根本性质: 1含有零向量的向量组一定线性相关;含有零向量的向量组一定线性相关;2整体无关整体无关 部分无关;部分相关部分无关;部分相关 整体相关;整体相关;3假设含有向量多的向量组可以由含有向量少的向假设含有向量多的向量组可以由含有向量少的向量组线性表出,那么含有向量多的向量组一定线性相量组线性表出,那么含有向量多的向量组一定线性相关;关;4向量组的秩是独一的,但是其极大线性无关并不向量

15、组的秩是独一的,但是其极大线性无关并不独一;独一;5假设向量组假设向量组I可以由向量组可以由向量组II线性表出,线性表出,那么向量组那么向量组I的秩的秩 向量组向量组II的秩;的秩;6等价的向量组秩一样。等价的向量组秩一样。例例 1 实数域实数域 上的线性空间上的线性空间 中,函数组中,函数组是一组线性无关的函数,其中是一组线性无关的函数,其中 为一为一组互不一样的实数。组互不一样的实数。例例 2 实数域实数域 上的线性空间上的线性空间 中,函数组中,函数组是一组线性无关的函数,其中是一组线性无关的函数,其中 为一为一组互不一样的实数。组互不一样的实数。例例 3 实数域实数域 上的线性空间上的

16、线性空间 中,函数组中,函数组也是线性无关的。也是线性无关的。RRR12,nxxxeee12,n RRR12,nxxx12,n RRR1,cos ,cos2 ,cosxxnx例例 4 实数域实数域 上的线性空间空间上的线性空间空间 中,函数组中,函数组与函数组与函数组都是线性相关的函数组。都是线性相关的函数组。RRR21,cos,cos2xx22sin ,cos ,sin,cos,sin,cos,4.nnxxxxxxn线性空间的基底,维数与坐标变换线性空间的基底,维数与坐标变换定义定义 设设 为数域为数域 上的一个线性空间。假设在上的一个线性空间。假设在 中存在中存在 个线性无关的向量个线性无

17、关的向量 使得使得 中的恣意一个向量中的恣意一个向量 都可以由都可以由 线性表出线性表出那么称那么称 为为 的一个基底;的一个基底;为向量为向量 在基底在基底 下的坐标。此时我们下的坐标。此时我们称称 为一个为一个 维线性空间,记为维线性空间,记为 例例 1 实数域实数域 上的线性空间上的线性空间 中向量组中向量组与向量组与向量组 VFn12,n V12,n V1122nnkkk12,n V12( ,)Tnk kk12,n Vndim.VnR3R(1,0,0),(1,1,0),(1,1,1) 都是都是 的基。的基。 是是3维线性空间。维线性空间。例例 2 实数域实数域 上的线性空间上的线性空间

18、 中的向量组中的向量组与向量组与向量组 都是都是 的基。的基。 是是4维线性空间。维线性空间。例例 3 实数域实数域 上的线性空间上的线性空间 中的向量组中的向量组 1011111 1,0000101 1 2 2R01101111,11110110 R2 2R(0,1,1),(1,0,1),(1,1,0)3R3R2 2RR nR x 与向量组与向量组都是都是 的基底。的基底。 的维数为的维数为 留意:留意: 经过上面的例子可以看出线性空间的基底并不经过上面的例子可以看出线性空间的基底并不独一,但是维数是独一确定的。利用维数的定义线性独一,但是维数是独一确定的。利用维数的定义线性空间可以分为有限

19、维线性空间和无限维线性空间。目空间可以分为有限维线性空间和无限维线性空间。目前,我们主要讨论有限维的线性空间。前,我们主要讨论有限维的线性空间。例例 4 在在4维线性空间维线性空间 中,向量组中,向量组21, ,nx xx21,2,(2) ,(2)nxxx nR x nR x1.n 2 2R01101111,11110110 与向量组与向量组是其两组基,求向量是其两组基,求向量 在这两组基下的在这两组基下的坐标。坐标。解:设向量解:设向量 在第一组基下的坐标为在第一组基下的坐标为 1011111 1,0000101 1 1234AA1234(,)Tx x x x于是可得于是可得 解得解得同样可

20、解出在第二组基下的坐标为同样可解出在第二组基下的坐标为123412011034111111110110 xxxx12347412,3333xxxx12341,1,1,4yyyy 由此可以看出:一个向量在不同基底下的坐标是不相由此可以看出:一个向量在不同基底下的坐标是不相同的。同的。基变换与坐标变换基变换与坐标变换设设 旧的与旧的与 新的新的是是 维线性空间维线性空间 的两组基底,它们之间的关系为的两组基底,它们之间的关系为 12,n 12,n Vn11221212,1,2,iiininiinniaaaaaina 1112121222121212,nnnnnnnaaaaaaaaa 将上式矩阵化可

21、以得到下面的关系式:将上式矩阵化可以得到下面的关系式:称称 阶方阵阶方阵n111212122212nnnnnnaaaaaaPaaa是由旧的基底到新的基底的过渡矩阵,那么上式可是由旧的基底到新的基底的过渡矩阵,那么上式可以写成以写成定理:过渡矩阵定理:过渡矩阵 是可逆的。是可逆的。1212,nnP P任取任取 ,设,设 在两组基下的坐标分别为在两组基下的坐标分别为 与与 ,那么我们有:,那么我们有:称上式为坐标变换公式。称上式为坐标变换公式。例例 1 在在4维线性空间维线性空间 中,向量组中,向量组V12,Tnx xx12,Tny yy1122nnxyxyPxy2 2R12340110,1111

22、1111,011012341011,0000111 1,101 1与向量组与向量组1234A为其两组基,求从基为其两组基,求从基 到基到基 的的过渡矩阵,过渡矩阵,并求向量并求向量 在这两组基下的坐标。在这两组基下的坐标。解:容易计算出下面的矩阵表达式解:容易计算出下面的矩阵表达式1234, 1234, 12341234,2110333111033312103331211333 12347412,3333xxxx向量向量 第一组基下的坐标为第一组基下的坐标为利用坐标变换公式可以求得利用坐标变换公式可以求得 在第二组基下的坐标为在第二组基下的坐标为AA1112233442110333111101

23、3331211033341211333yxyxyxyx例例 2 教材教材13页例页例1.2.6 线性空间的子空间线性空间的子空间定义定义 设设 为数域为数域 上的一个上的一个 维线性空间,维线性空间, 为为 的一个非空子集合,假设对于恣意的的一个非空子集合,假设对于恣意的 以及恣意的以及恣意的 都有都有那么我们称那么我们称 为为 的一个子空间。的一个子空间。例例 1 对于恣意一个有限维线性空间对于恣意一个有限维线性空间 ,它必有,它必有两个平凡的子空间,即由单个零向量构成的子空间两个平凡的子空间,即由单个零向量构成的子空间 FVnVW,W , k lFklWVWV 以及线性空间以及线性空间 本

24、身。本身。例例 2 设设 ,那么线性方程组,那么线性方程组 的的全部解为全部解为 维线性空间维线性空间 的一个子空间,我们称的一个子空间,我们称其为齐次线性方程组的解空间。当齐次线性方程组其为齐次线性方程组的解空间。当齐次线性方程组 有无穷多解时,其解空间的基底即为其根有无穷多解时,其解空间的基底即为其根底解系;解空间的维数即为根底解系所含向量的个底解系;解空间的维数即为根底解系所含向量的个数。数。例例 3 设设 为为 维线性空间维线性空间 中的中的一组向量,那么非空子集合一组向量,那么非空子集合 0Vm nAR0AX nnR0AX 12,s nV121122,sssispankkkkF 构成

25、线性空间构成线性空间 的一个子空间,称此子空间为有限的一个子空间,称此子空间为有限生成子空间,称生成子空间,称 为该子空间的生成元。为该子空间的生成元。 的基底即为向量组的基底即为向量组 的极大线性无关组,的极大线性无关组, 的维数即的维数即为向量组为向量组 的秩。的秩。例例 4 实数域实数域 上的线性空间上的线性空间 中全体上三角矩中全体上三角矩阵集合,全体下三角矩阵集合,全体对称矩阵集合,阵集合,全体下三角矩阵集合,全体对称矩阵集合,全体反对称矩阵集合分别都构成全体反对称矩阵集合分别都构成 的子空间,的子空间,V12,s 12,sspan 12,s 12,sspan 12,s n nRRn

26、 nR问题:这几个子空间的基底与维数分别时什么?问题:这几个子空间的基底与维数分别时什么?子空间的交与和子空间的交与和 矩阵或线性变换的特征值与特征向量矩阵或线性变换的特征值与特征向量 定义定义 设设 是数域是数域 上的线性空间上的线性空间 的一个线的一个线性变换,假设对于数域性变换,假设对于数域 中任一元素中任一元素 , 中中都存在一个非零向量都存在一个非零向量 ,使得,使得 那么称那么称 为为 的一个特征值,而的一个特征值,而 称为称为 的的属于特征值属于特征值 的一个特征向量。的一个特征向量。 如今设如今设 是数域是数域 上的上的 维线性空间,维线性空间, 中取定一个基中取定一个基 ,设

27、线性变换,设线性变换 在这组基下的矩阵是在这组基下的矩阵是 ,向量,向量 在这组基下的在这组基下的坐标是坐标是 , 。那么我们有。那么我们有 fFVF0V0( )f 0ff0VFnV12,n fAX0F由此可得定理:由此可得定理: 是是 的特征值的特征值 是是 的特征值的特征值 是是 的属于的属于 的特征向量的特征向量 是是 的的属于属于 的特征向量的特征向量 因此,只需将因此,只需将 的全部特征值求出来,它们的全部特征值求出来,它们就是线性变换就是线性变换 的全部特征值;只需将矩阵的全部特征值;只需将矩阵 的的属于属于 的全部特征向量求出来,分别以它们为坐的全部特征向量求出来,分别以它们为坐

28、标的向量就是标的向量就是 的属于的属于 的全部特征向量。的全部特征向量。 00( )fAXX 0f0Af0 XA0AfA0f0例例 1 设设 是数域是数域 上的上的3维线性空间,维线性空间, 是是 上上的一个线性变换,的一个线性变换, 在在 的一个基的一个基 下的下的矩阵是矩阵是求求 的全部特征值与特征向量。的全部特征值与特征向量。解:解: 的特征多项式为的特征多项式为VKffV123, 222214241A fVA2222214241(3) (6)IA所以所以 的特征值是的特征值是 二重与二重与 。 对于特征值对于特征值 ,解齐次线性方程组,解齐次线性方程组得到一个根底解系:得到一个根底解系

29、:A363(3)0IA X210,201TT从而从而 的属于的属于 的极大线性无关特征向量组是的极大线性无关特征向量组是于是于是 的属于的属于 的全部特征向量是的全部特征向量是 这里这里 为数域为数域 中不全为零的数对。中不全为零的数对。 对于特征值对于特征值 ,解齐次线性方程组,解齐次线性方程组得到一个根底解系:得到一个根底解系: 3f1122132,2 f31 12212,kkk kK12,k kK6( 6)0IA X122T从而从而 的属于的属于 的极大线性无关特征向量组是的极大线性无关特征向量组是于是于是 的属于的属于 的全部特征向量的全部特征向量这里这里 为数域为数域 中恣意非零数。

30、中恣意非零数。 矩阵的类似与类似对角化矩阵的类似与类似对角化类似矩阵的性质:类似矩阵的性质: 类似矩阵有一样的特征多项式,有一样的特征类似矩阵有一样的特征多项式,有一样的特征f63123223,kkKf6kK值,有一样的行列式值,有一样的秩,有一样的迹,值,有一样的行列式值,有一样的秩,有一样的迹,有一样的谱。有一样的谱。矩阵的特征值与特征向量的性质:矩阵的特征值与特征向量的性质: 1 阶矩阵阶矩阵 的属于特征值的属于特征值 的全部特征向量的全部特征向量再添上零向量,可以组成再添上零向量,可以组成 的一个子空间,称之为矩的一个子空间,称之为矩阵阵 的属于特征值的属于特征值 的特征子空间,记为的

31、特征子空间,记为 ,不难,不难看出看出 正是特征方程组正是特征方程组 的解空间。的解空间。2 属于不同特征值的特征向量是线性无关的。属于不同特征值的特征向量是线性无关的。 An0nRA00V0V0()0IA X3 设设 是是 的的 个互不同的特征个互不同的特征值,值, 的几何重数为的几何重数为 , 是对是对应于应于 的的 个线性无关的特征向量,那么的一切个线性无关的特征向量,那么的一切这些特征向量这些特征向量依然是线性无关的。依然是线性无关的。4 恣意一个特征值的几何重数不大于它的代数恣意一个特征值的几何重数不大于它的代数重数。重数。12,r Ariiq12,iiiiqiiq12111212122212,;,;,rqqrrrq5一个特征向量不能属于不同的特征值。一个特征向量不能属于不同的特征值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论