高数--曲率教学文案_第1页
高数--曲率教学文案_第2页
高数--曲率教学文案_第3页
高数--曲率教学文案_第4页
高数--曲率教学文案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、山东农业大学 高等数学 主讲人: 苏本堂高数-曲率山东农业大学 高等数学 主讲人: 苏本堂上的对应点为M N 并设对应于x的增量Dx 弧 s 的增量为Ds. 因为当Dx0时 Ds MN 又Dx与Ds同号 所以 由此得弧微分公式: 202200)(1lim|)()(limlimxyxyxxsdxdsxxxDDDDDDDDDD21 y dxyds21 202200)(1lim|)()(limlimxyxyxxsdxdsxxxDDDDDDDDDD202200)(1lim|)()(limlimxyxyxxsdxdsxxxDDDDDDDDDD或者 22)(d)(ddyxs弧微分公式 设x xDx为(a

2、b)内两个邻近的点 它们在曲线yf(x)山东农业大学 高等数学 主讲人: 苏本堂曲率是描述曲线局部性质(弯曲程度)的量曲率是描述曲线局部性质(弯曲程度)的量MM 1SD D2SD DNN D D)弯曲程度越大转角越大弯曲程度越大转角越大转角相同弧段短的弯曲大转角相同弧段短的弯曲大1 1、曲率的定义、曲率的定义1M3M)2 D D2M2SD D1SD D1 D D)二、曲率及其计算公式二、曲率及其计算公式问题: 怎样刻画曲线的弯曲程度?提示: 可以用单位弧段上切线转过的角度的大小来表达弧段的平均弯曲程度.山东农业大学 高等数学 主讲人: 苏本堂二、曲率及其计算公式二、曲率及其计算公式在光滑弧上自

3、点 M 开始取弧段, 其长为,sD对应切线,D定义弧段 上的平均曲率sDsKDD点 M 处的曲率sKsDDD0limsdd注注: 直线上任意点处的曲率为 0 !转角为山东农业大学 高等数学 主讲人: 苏本堂例例1. 求半径为R 的圆上任意点处的曲率 .解解: 如图所示 ,DDRssKsDDD0limR1可见: R 愈小, 则K 愈大 , 圆弧弯曲得愈厉害 ;R 愈大, 则K 愈小 , 圆弧弯曲得愈小 .DsDRMMD山东农业大学 高等数学 主讲人: 苏本堂有曲率近似计算公式,1时当 yytan)22(设y arctan得xyd)arctan(d xyyd12 xysd1d2故曲率计算公式为sK

4、dd23)1(2yyK yK 又曲率曲率K 的计算公式的计算公式)(xfy 二阶可导,设曲线弧则由山东农业大学 高等数学 主讲人: 苏本堂,),(),(二阶可导二阶可导设设 tytx .)()()()()()(2322ttttttk ,)()(ttdxdy .)()()()()(322tttttdxyd 注:参数方程下曲率的计算23)1(2yyK 山东农业大学 高等数学 主讲人: 苏本堂 例2 计算等边双曲线xy1在点(1, 1)处的曲率.曲线在点(1 1)处的曲率为因此y|x11 y|x12解解 由xy1 得 21xy 232)1 (|yyK 232) 1(1 (22221解 21xy 32

5、xy 232)1 (|yyK 232) 1(1 (22221232)1 (|yyK 232) 1(1 (22221 23)1(2yyK 山东农业大学 高等数学 主讲人: 苏本堂 例3 抛物线yax2bxc上哪一点处的曲率最大? 解 由yax2bxc 得 y2axb y2a 代入曲率公式 得 显然 当2axb0时曲率最大 因此 抛物线在顶点处的曲率最大 此处K|2a| 232)2(1 |2|baxaK 曲率最大时 xab2 对应的点为抛物线的顶点 23)1(2yyK 山东农业大学 高等数学 主讲人: 苏本堂例例4. 求椭圆tbytaxsincos)20(t在t=0处的曲率.解解:故曲率为 ba2

6、3)cossin(2222tbta;sinta;costbtacostbsin)(t)(t)(t )(t 2322)()()()()()(ttttttK 在t=0处,即在点(a,0)的曲率为2baK 山东农业大学 高等数学 主讲人: 苏本堂三、三、 曲率圆与曲率半径曲率圆与曲率半径TyxoR),(yxMC设 M 为曲线 C 上任一点 , 在点在曲线KRDM1把以 D 为中心, R 为半径的圆叫做曲线在点 M 处的曲率圆 ( 密切圆 ) , R 叫做曲率半径, D 叫做曲率中心.在点M 处曲率圆与曲线有下列密切关系:(1) 有公切线;(2) 凹向一致;(3) 曲率相同 .M 处作曲线的切线和法线

7、,的凹向一侧法线上取点 D 使D山东农业大学 高等数学 主讲人: 苏本堂 1.曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数.11,.RkkR即注注: 2.曲线上一点处的曲率半径越大,曲线在该点处的曲率越小(曲线越平坦);曲率半径越小,曲率越大(曲线越弯曲). 3.曲线上一点处的曲率圆弧可近似代替该点附近曲线弧(称为曲线在该点附近的二次近似).山东农业大学 高等数学 主讲人: 苏本堂 例5 设工件表面的截线为抛物线y0.4x2. 现在要用砂轮磨削其内表面. 问用直径多大的砂轮才比较合适? 解 砂轮的半径不应大于抛物线顶点处的曲率半径 抛物线顶点处的曲率半径为 r=K-11.25 因此, 选用砂轮的半径不得超过1.25单位长 即直径不得超过2.50单位长 y0.8x y0.8 y|x00 y|x00.8 把它们代入曲率公式 得232)1 (|yyK 08 山东农业大学 高等数学 主讲人: 苏本堂内容小结内容小结1. 弧长微分xysd1d2或22)(d)(ddyxs2. 曲率公式sKdd23)1 (2yy 3. 曲率圆曲率半径KR1yy 23)1 (2山东农业大学 高等数学 主讲人: 苏本堂 作业:作业

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论