下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、<<<<<<精品资料高考概率大题专项题型一.解答题1 .某年级星期一至星期五每天下午排 3节课,每天下午随机选择1节作为综合 实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践 课程.(1)求这两个班 在星期一不同时上综合实践课”的概率;(2)设这两个班 在一周中同时上综合实践课的节数”为X,求X的概率分布表 与数学期望E (X).2 .甲、乙两人组成 星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则星队”得3分;如果只有一个人猜对,则星 队”得1分;如果两人都没猜对,则 星队”得0分.已知甲每轮猜对的
2、概率是 乙每轮猜对的概率是-j;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不 影响.假设 星队”参加两轮活动,求:(I)星队”至少猜对3个成语的概率;(II)星队”两轮得分之和为X的分布列和数学期望EX3某小组共10 人,利用假期参加义工活动,已知参加义工活动次数为1, 2, 3的人数分别为3, 3, 4,现从这10 人中随机选出2 人作为该组代表参加座谈会(1)设A为事件 选出的2人参加义工活动次数之和为 4",求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望4某商场一号电梯从1 层出发后可以在2、 3、 4 层停靠已知该电
3、梯在1 层载有 4 位乘客,假设每位乘客在2、 3、 4 层下电梯是等可能的(I ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(n)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.<<<<<<精品资料<<<<<杂品资料 »»»»5 .集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为-1,工,2,且每个电子元件能否正常工作相互独立, 2 2 3若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所
4、需费用为100元.(I )求集成电路E需要维修的概率;(n)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.6 .某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有 3个红球、1个白球的 甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的内箱中 各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区(n)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?7 .为丰富中学生的课余生活,增进中学生之间的交往与
5、学习,某市甲乙两所中 学举办一次中学生围棋擂台赛.比赛规则如下,双方各出3名队员并预先排定好 出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者 被淘汰出局,由第二号选手挑战上一局获胜的选手, 依此类推,直到一方的队员 全部被淘汰,另一方算获胜.假若双方队员的实力旗鼓相当(即取胜对手的概率 彼此相等)(I)在已知乙队先胜一局的情况下,求甲队获胜的概率.(R)记双方结束比赛的局数为 g求己的分布列并求其数学期望EE8 . M公司从某大学招收毕业生,经过综合测试,录用了 14名男生和6名女生, 这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180 分以上者到
6、 甲部门”工作;180分以下者到 乙部门”工作.另外只有成绩高于180 分的男生才能担任 助理工作”.(I)如果用分层抽样的方法从 甲部分”人选和乙部分”人选中选取8人,再从 这8人中选3人,那么至少有一人是 甲部门”人选的概率是多少?(n)若从所有 甲部门”人选中随机选3人,用X表示所选人员中能担任 助理 工作”的人数,写出X的分布列,并求出X的数学期望.6865 60 29 .生产A, B两种元件,其质量按测试指标划分为:指标大于或等于82为正品, 小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标70, 76)76, 82)82, 88)88, 94)94
7、, 100元件A81240328元件B71840296(I )试分别估计元件 A,元件B为正品的概率;(n)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一 件元件B,若是正品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i )记X为生产1件元件A和1件元件B所得的总利润,求随机变量 X的分 布列和数学期望;(ii)求生产5件元件B所获得的利润不少于140元的概率.10 . 一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5, 15, (15,25 , (25, 35 , (35, 45,由此得
8、到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5, 15内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率).频率组距0_0翌n2SO100.02511 .某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为 且;15(1)求该小组中女生的人数;(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为冬,4每个男生通过
9、的概率均为2;现对该小组中男生甲、男生乙和女生内 3个人进行3测试,记这3人中通过测试的人数为随机变量 g求己的分布列和数学期望.12 .某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:学院机械工程学院海洋学院医学院经济学院人数4646(I )从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不 属于同一学院的概率;(n)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为 g 求随机变量己的概率分布列和数学期望.13 .甲、乙两名同学参加 汉字听写大赛”选拔测试,在相同测
10、试条件下,两人 5 次测试的成绩(单位:分)如下表:第1次第2次第3次第4次第5次甲5855769288乙6582878595(I)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(H)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X,求随机变量X的分布列和期望EX14 .某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一 年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别 为之,5;如果投资乙项目,一年后可能获利 20%,也可能损失20%,这两 种情况发生的概率分别为 a和B (
11、o+ B =1 .(1)如果把10万元投资甲项目,用 己表示投资收益(收益=回收资金-投资资 金),求己的概率分布及E2(2)若把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,求 ( 的取值范围.15 .袋中装有围棋黑色和白色棋子共 7枚,从中任取2枚棋子都是白色的概率为现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都 是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望 E (X);(2)求甲取到白球的概率.16 .小王为了锻炼身体,每天坚持 健步走”,
12、并用计步器进行统计.小王最近 8大健步走”步数的频数分布直方图(如图)及相应的消耗能量数据表(如表)健步走步数©16171819消耗能量(卡路里)400440480520(I )求小王这8天 健步走”步数的平均数;2天,设小王这2天通17 .某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:80, 90), 90, 100), 100, 110), 110, 120(1)在这36名学生中随机抽取3名学生,求同时满足下列条件的概率:(1)有且仅有1名学生成绩不低于110分;(2)成绩在9
13、0, 100)内至多1名学生;(2)在成绩是80, 100)内的学生中随机选取3名学生进行诊断问卷,设成绩在90, 100)内的人数为随机变量X,求X的分布列及数学期望EX 频率a-ni太160志'匕一一LkSO W 100 110 120 成绩18 .一批产品需要进行质量检验,检验方案是:先从这批产品中任取5件作检验, 这5件产品中优质品的件数记为n .如果n=3,再从这批产品中任取2件作检验, 若都为优质品,则这批产品通过检验;如果 n=4,再从这批产品中任取1件作检 验,若为优质品,则这批产品通过检验;如果 n=5,则这批产品通过检验;其他 情况下,这批产品都不能通过检验.假设这
14、批产品的优质品率为50%,即取出的产品是优质品的概率都为1 且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为200元,凡抽取的每件产品都需要检验,对这批 产品作质量检验所需的费用记为x (单位:元),求x的分布列.概率大题专项题型参考答案.解答题1 .某年级星期一至星期五每天下午排 3节课,每天下午随机选择1节作为综合 实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践 课程.(1)求这两个班 在星期一不同时上综合实践课”的概率;(2)设这两个班 在一周中同时上综合实践课的节数”为X,求X的概率分布表 与数学期望E (X).【解答
15、】解:(1)这两个班 在星期一不同时上综合实践课”的概率为(4分)(2) 由 题 意 得 小)电“七k二0, 1, 2, 3,(6分)3 p(x=k)ye)k所以X的概率分布表为:X012345P32|80|8040101243243243243243243(8分)所以,X的数学期望为E二(10分)2 .甲、乙两人组成 星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则星队”得3分;如果只有一个人猜对,则星队”得1分;如果两人都没猜对,则 星队”得0分.已知甲每轮猜对的概率是乙每轮猜对的概率是 工 每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不 3影响.假设
16、 星队”参加两轮活动,求:(I)星队”至少猜对3个成语的概率;(II)星队”两轮得分之和为X的分布列和数学期望EX【解答】解:(I)星队”至少猜对3个成语包含 甲猜对1个,乙猜对2个“,甲猜对2个,乙猜对1个",甲猜对2个,乙猜对2个”三个基本事件,故概率P=二 .三+;李: V(II)星队”两轮得分之和为X可能为:0, 1, 2, 3, 4, 6,一 一,9 21则 p(x=o)=.二 5-: = '1.P (X=1) =2X.-:'+.=,443433144X=2P(X=3) =2X -二.1,P (X=4) =2X 二 -+ 一=二.: I-:22P(X=6)=
17、1,;、故X的分布列如下图所示:X012346P_10_至_12_旦144:数学期望 E(X =0X+1 X-lP-+2X-+3X-+4X-+6X 邹=552=23144144144144144144 144 63 .某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1, 2, 3的人数分别为3, 3, 4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件 选出的2人参加义工活动次数之和为 4",求事件A发生的概 率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量 X的分布 列和数学期望.【解答】解:(1)从10人中选出2人的选法共有 肾口
18、=45种,<<<<<杂品资料 »»»»事件A:参加次数的和为4,情况有:1人参加1次,另1人参加3次,2人都参加2次;共有 C;C;+C=15 种,C1r事件A发生概率:P= Y- cio 3(H) X的可能取值为0, 1, 2.P (X=0)P (X=1)=Cj+Cj+C = 4C2 15J 口i i i iC2 15 'Q ioP (X=2)1 1 C;C7-匕口=15 5X012P415115415,- X的分布列为:EX=0X £+1 X -L+2 X J-=1.1515154.某商场一号电梯从1层
19、出发后可以在2、3、4层停靠.已知该电梯在1层载 有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(I ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(n)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【解答】解:(1)设4位乘客中至少有一名乘客在第2层下电梯的事件为A, (1分)由题意可得每位乘客在第2层下电梯的概率都是:,(3分) ,J贝UP(A)=1-P0)二1-(尹若.(6分)(H) X的可能取值为0, 1, 2, 3, 4,(7分)由题意可得每个人在第4层下电梯的概率均为1,且每个人下电梯互不影响,3所以,9)(9分)X01234P163224国1S1
20、81818181(11 分)E(X)=( 13分)5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为工,1, 2,且每个电子元件能否正常工作相互独立, 2 2 3若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(I )求集成电路E需要维修的概率;(n)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【解答】解:(I )三个电子元件能正常工作分别记为事件 A, B, C,则P (A)q, p =1, p(C)4- £士0依题意,集成电路E
21、需要维修有两种情形:3个元件都不能正常工作,概率为 P1=P (ABC) =P (:)P (B) P (C) =-xl2 2x 工=L.3 123个元件中的2个不能正常工作,概率为 P2=P (ABC) +P ( ABC) +P (标C)所以,集成电路E需要维修的概率为P1+P2=y-+1=-.L 乙 J JL 4(H)设己为维修集成电路的个数,则 朗艮从B (2,得),而X=100E,E k 卒 2-kp(x=1ooa =pa=k=c§?备)?(古),k=o, 1, 2.X的分布列为:X0100200P里巫廷144 72 144. EX=0K 0+100 X 至+200 X 空一典
22、14472144 36.某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有 3个红球、1个白球的 甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的内箱中 各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区 别)(n)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?P (X=160)P (X=224)P (X=256)P (X=320)【解答】解:(I )记顾客获得半价优惠为事件 A,则P (A) =3X2X1 =! 4乂4乂4 32两个顾客至少一个
23、人获得半价优惠的概率:P=1- p (A) P (A) =1 - (1-且)2= 183 .分) 321024(II)若选择方案一,则付款金额为 320-50=270元.若选择方案二,记付款金额为 X元,则X可取160, 224, 256, 320.卫32'_3X2X3+3X2X1+1X2X1 13 = 一4x4x432_3X2X3+1X2X3+1X2X1 13 = 一4x4x432_1 X 2 X 3 _ 3 =.4乂4乂4 32'WJ E (X) =160xH-+224X”+256x"+320xH-=240. 32323232v 270>240,.第二种方案
24、比较划算.(12分)7 .为丰富中学生的课余生活,增进中学生之间的交往与学习,某市甲乙两所中学举办一次中学生围棋擂台赛.比赛规则如下,双方各出3名队员并预先排定好 出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者 被淘汰出局,由第二号选手挑战上一局获胜的选手, 依此类推,直到一方的队员全部被淘汰,另一方算获胜.假若双方队员的实力旗鼓相当(即取胜对手的概率 彼此相等)(I)在已知乙队先胜一局的情况下,求甲队获胜的概率.(R)记双方结束比赛的局数为 g求己的分布列并求其数学期望EE【解答】解:(I )在已知乙队先胜一局的情况下,相当于乙校还有 3名选手, 而甲校还剩2名选手,
25、甲校要想取胜,需要连胜 3场,或者比赛四场要胜三场, 且最后一场获胜,所以甲校获胜的概率是 :.(H)记双方结束比赛的局数为 g M己=34, 5P二3)二:手:5)=C;C:g) G|-所以己的分布列为345P1 a3 百3 百数学期望E己二3父六+4><怖+5父春仔. 4 o o o8 . M公司从某大学招收毕业生,经过综合测试,录用了 14名男生和6名女生, 这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180 分以上者到 甲部门”工作;180分以下者到 乙部门”工作.另外只有成绩高于180 分的男生才能担任 助理工作”.(I)如果用分层抽样的方法从 甲部
26、分”人选和乙部分”人选中选取8人,再从 这8人中选3人,那么至少有一人是 甲部门”人选的概率是多少?(n)若从所有 甲部门”人选中随机选3人,用X表示所选人员中能担任 助理工作”的人数,写出X的分布列,并求出X的数学期望.男8 8 66 5 4 3 25 4 23 2 1女8-65 60 2【解答】解:(I)用分层抽样的方法,每个人被抽中的概率为 且=2, 20 5根据茎叶图,有 甲部门”人选10人,乙部门”人选10人,所以选中的 甲部门”人选有10x2=4人,E部门”人选有10x2=4人,55用事件A表示 至少有一名甲部门人被选中”,则它的对立事件,表示 没有一名甲_ c,部门人被选中 &q
27、uot;,M p (A) =1 p (7)=1-2=1 _£=!£.区 56 14因此,至少有一人是 甲部门”人选的概率是 至;14(n)依据题意,所选毕业生中能担任 助理工作”的人数X的取值分别为0, 1,2, 3,0 31 2c既ck_ ,、o 41-e4?P (X = 0) = C, , P (X=1) = q /c330c3io1010C2 %,P(X=2)= C1 c 产4, P(X=3)=J 2 io0 4 1,=因此,X的分布列如下:X0123P1303101216H+3xi=i所以X的数学期望EX=0X J-+1 XA+2X30309 .生产A, B两种元件
28、,其质量按测试指标划分为:指标大于或等于82为正品, 小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标70, 76)76, 82)82, 88)88, 94)94, 100元件A81240328元件B71840296(I )试分别估计元件 A,元件B为正品的概率;(n)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一 件元件B,若是正品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i )记X为生产1件元件A和1件元件B所得的总利润,求随机变量 X的分 布列和数学期望;(ii)求生产5件元件B所获得的利润不少于140元的概率.【解答】解
29、:(I )元件A为正品的概率约为 即撰咀聋.元件B为正品的概率约为 驾萼导.1004(H)(i)二.生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A次B次.随机变量X的所有取值为90, 45, 30, - 15.P (X=30) =|x(l -1)=1;.P(X=90) =i xW; P(X=45)=(154 55 7 4 20P (X=-15)=(1-4)X(1-A)=-L.二随机变量X的分布列为:EX=90XxXf30xl+(-15)X-X.(ii)设生产的5件元件B中正品有n件,则次品有5-n件.依题意得 50n- 10 (5-n) >140,解得
30、- 所以 n=4或n=5.设生产5件元件B所获得的利润不少于140元”为事件A, 则P(A)Y号尸吟+号产品.10. 一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5, 15, (15,25 , (25, 35 , (35, 45,由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5, 15内的小球个数为X,求X(以直方图中的频率作为概率)的分布列和数学期望.组距-T.-sO100.0O.OS2=51323 S5 43
31、 重里/克【解答】解:(1)由题意得,(0.02+0.032+a+0.018) X 10=1解得 a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为 20, 而50个样本小球重量的平均值为:X=0.2X 10+0.32X20+0.3X30+0.18X40=24.6 (克)故估计盒子中小球重量的平均值约为 24.6克.(2)利用样本估计总体,该盒子中小球的重量在5, 15内的0.2;则XB (3,白,5X=0, 1, 2, 3;P(X=0)=C:X (1) 3晦;X0123P64T2548125125,- X的分布列为:6412即 E (X) =0X125125.二
32、39; K=48 +F+2X(X=1) =cx (/(X=2) =C1X (1)(X=3) =cX (1) J 52xX=1L;5 125X ( ) 2= 12 ;51253d,12511 .某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业 技能进行测试.在待测试的某一个小组中有男、女生共 10人(其中女生人数多 于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为 得;(1)求该小组中女生的人数;(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为每个男生通过的概率均为2;现对该小组中男生甲、男生乙和女生内 3个人进行 3测试,记这3人中通过测
33、试的人数为随机变量g求己的分布列和数学期望.C1C 1【解答】解:(1)设该小组中有n个女生,根据题意,得 n 肥$上 15 v10解得n=6, n=4 (舍去),该小组中有6个女生;(2)由题意,己的取值为0,1,2, 3;p a =0=;然;吁金 334 36P a =1 =Cx|xX-+1712 16 36 36 36 -36一士的分布列为:0123P17161236363636EE = 1716+2X+3X363612 2512 .某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:学院机
34、械工程学院海洋学院医学院经济学院人数4646(I )从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不 属于同一学院的概率;(n)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为 g 求随机变量己的概率分布列和数学期望.【解答】解:(I)从20名学生随机选出3名的方法数为C主,选出3人中任意两个均不属于同一学院的方法数为:C卜ctc;+c;c、c;+c 卜 c;c;+cbc 卜3Cbci-Cl + Cl-Ce所以1C;+C卜C;Cg + C g C:_ g =19(H)己可能的取值为0, 1, 2, 3,P(t5 * 7X 16 里 p(g二i)二- -3x20x19
35、-57p 2 pl56c4 8X15X48C15C416X6320r 33X20X19 19c3 3x20x1995V2OC3 3X20X19 285 v20所以己的分布列为0123P2857&19895-羡1所以; T13 .甲、乙两名同学参加 汉字听写大赛”选拔测试,在相同测试条件下,两人 5 次测试的成绩(单位:分)如下表:第1次第2次第3次第4次第5次甲5855769288乙6582878595(I)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不 用计算);(H)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析, 设抽到的两个成绩中,90分以上的个数为X,
36、求随机变量X的分布列和期望EX【解答】解:(I)茎叶图如图所示,由图可知,乙的平均成绩大于甲的平均成 绩,且乙的方差小于甲的方差,因此应选派乙参赛更好.(H)随机变量X的所有可能取值为0, 1, 2.p(x=o)=P(X=1)=2C;旦ACLP(X=2)=X012P1625125随机变量X的分布列是:EX二。乂16+1X2525 +2 25 -561S914 .某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为工,-1, -1;如果投资乙项目,一年后可能获利 20%,也可能损失20%,这两2 4 4种情况
37、发生的概率分别为 a和B ( o+ B =1 .(1)如果把10万元投资甲项目,用 己表示投资收益(收益=回收资金-投资资金),求己的概率分布及E2(2)若把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,求的取值范围.【解答】解:(1)依题意,己的可能取值为1, 0, - 1,p1)春一士的分布列为:10-1p121414EE-=.(6 分)2 4 4(2)设”表示10万元投资乙项目的收益,则”的可能取值为2, -2,P "=2 =%P (4-2) =37的分布列为2-2Pa二 Et =2垢20 =4ot2,二.把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,-
38、4 a 24,解得匹巧器.(12分)15 .袋中装有围棋黑色和白色棋子共 7枚,从中任取2枚棋子都是白色的概率为 工.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都 是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望 E (X);(2)求甲取到白球的概率.2【解答】解:设袋中白球共有X个,则依题意知: *=1,即这二1_=1C; 7427即x2- x- 6=0,解之得x=3, (x=- 2舍去).(1分)(1)袋中的7枚棋子3白4黑,随机变量X的所有可能取值是1
39、, 2, 3, 4, 5.P (x=1)P (x=2)P (x=3)P (x=4)A1 =二=二A; 35,(5分)(注:此段(4分)的分配是每错1个扣(1分),错到4个即不得分.)随机变量X的概率分布列为:X12345P3727635335135所以 E (X) =1xg+2xg+3xg+4xW+5X2=2.分) 77353535(2)记事件A二中取到白球”,则事件A包括以下三个互斥事件:A尸甲第1次取球时取出白球A2=中第2次取球时取出白球A3二中第3次取球时取出白球依题意知:P (Ai)与二,P (A2)='?=8 , P (A3)一"二 1 ,分) A; 7A; 35
40、'a; 35'(注:此段(3分)的分配是每错1个扣(1分),错到3个即不得分.)所以,甲取到白球的概率为 P (A) =P (Ai) +P (A2) +P (A3)二旦>(10分)3516 .小王为了锻炼身体,每天坚持 健步走”,并用计步器进行统计.小王最近 8大健步走”步数的频数分布直方图(如图)及相应的消耗能量数据表(如表) .健步走步数©16171819消耗能量(卡路里)400440480520(I )求小王这8天 健步走”步数的平均数;(II)从步数为16千步,17千步,18千步的几天中任选2天,设小王这2天通 过健步走消耗的 能量和”为X,求X的分布列.解:(I)小王这8天 健步走”步数的平均数为: xg炉3泛25 (千步) .(II) X的各种取值可能为 800, 840, 880, 920.P 体 800)7二4 C2 5P(X=S40)=tjL=7-,P(X=880) =,、C/1 2P(X= 920) =7,15%X的分布列为:X800840880920Ps-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农业行业农田水利社会化服务体系建设水平考核试卷
- 2025年高中阶段学生学业水平考试与综合素质评价衔接考核试卷
- 2025年公共事业行业智能城市建设探索报告
- 2025年互联网行业元宇宙营销水平考试-DAO社区营销中的品牌话语权管理考核试卷
- 2025年化妆品行业虚假天然成分宣传考核试卷
- 新材料引领汽车未来-探寻轻量化、高强度的驱动力
- 2025重庆高新区公安分局辅警招聘33人笔试考试参考试题及答案解析
- 2025北京市通州区大学生乡村医生招聘5人考试笔试备考题库及答案解析
- 2025呼伦贝尔阿荣旗中蒙医院招聘编外专业技术人员笔试考试备考题库及答案解析
- 2025年11月四川省西南医科大学招聘专职辅导员15人笔试考试参考题库及答案解析
- 导电高分子与其复合材料
- (34)-妇人病证治特点解读《金匮要略》
- 攻略:炎龙骑士团2
- 市北资优六年级分册 第10章 10.6 探索用平面截正方体所得截面形状 郑斌
- 高二物理竞赛力学课件
- GA 423-2015警用防弹盾牌
- 监狱消防安全知识讲座课件
- 中国文化概论(第三版)全套课件
- 材料作文“空白罚单”作文导写
- 农业机械安全操作规程手册课件
- 医院招聘护士考试题库(附答案)
评论
0/150
提交评论