




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学说课稿高中数学说课稿1 高中数学第三册(选修)第一章第2节第一课时 一、教材分析 教材的地位和作用 期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。 教学重点与难点 重点:离散型随机变量期望的概念及其实际含义。 难点:离散型随机变量期望的实际应用。 理论依据本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,
2、故把其作为本节课的教学难点。 二、教学目标 知识与技能目标 通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。 会计算简单的离散型随机变量的期望,并解决一些实际问题。 过程与方法目标 经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。 通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。 情感与态度目标 通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。 三、教法选择 引导发现法 四、学法指导 “授之以鱼,不如授之以渔”,注重发挥学
3、生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。 五、教学的基本流程设计 高中数学第三册离散型随机变量的期望说课教案.rar 高中数学说课稿2 一、教材分析 集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。 二、教学目标 1、学习目标 (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属 于”关系; (2)能选择自然语言、图形语言、集合
4、语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2、能力目标 (1)能够把一句话一个事件用集合的方式表示出来。 (2)准确理解集合与及集合内的元素之间的关系。 3、情感目标 通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。 三、教学重点与难点 重点 集合的基本概念与表示方法; 难点 运用集合的两种常用表示方法列举法与描述法,正确表示一些简单的集合; 四、教学方法 (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果; (2)学生在老师的引导下,通过阅
5、读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。 五、学习方法 (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时, 教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。 (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培 优扶差,满足不同。” 六、教学思路 具体的思路如下 复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。 一、 引入课题 军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员
6、;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念集合,即是一些研究对象的总体。 二、 正体部分 学生阅读教材,并思考下列问题: (1)集合有那些概念? (2)集合有那些符号? (3)集合中元素的特性是什么? (4)如何给集合分类? (一)集合的有关概念 (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号, 都可以称作对象. (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由 这些对象的全体构成的集合. (3)元素
7、:集合中每个对象叫做这个集合的元素. 集合通常用大写的拉丁字母表示,如A、B、C、?元素通常用小写的拉丁字母表示,如a、b、c、? 1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子, 对学生的例子予以讨论、点评,进而讲解下面的问题。 2、元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于A,记作aA。(举例)集合A=2,3,4,6,9a=2 因此我们知道 aA (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A 要注意“”的方向,不能把aA颠倒过来写. (举例) 集合A=3,4,6,9a=2 因此我们知道a?A 3、集合中元素的特性 (1)确定性
8、:给定一个集合,任何对象是不是这个集合的元素是确定的了. (2)互异性:集合中的元素一定是不同的. (3)无序性:集合中的元素没有固定的顺序. 4、集合分类 根据集合所含元素个属不同,可把集合分为如下几类: (1)把不含任何元素的集合叫做空集 (2)含有有限个元素的集合叫做有限集 (3)含有无穷个元素的集合叫做无限集 注:应区分?,?,0,0等符号的含义 5、常用数集及其表示方法 (1)非负整数集(自然数集):全体非负整数的集合.记作N (2)正整数集:非负整数集内排除0的集.记作N*或N+ (3)整数集:全体整数的集合.记作Z (4)有理数集:全体有理数的集合.记作Q (5)实数集:全体实数
9、的集合.记作R 注:(1)自然数集包括数0. (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排 除0的集,也这样表示,例如,整数集内排除0的集,表示成Z* (二)集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。 (1) 列举法:把集合中的元素一一列举出来,写在大括号内。 如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,?; 例1(课本例1) 思考2,引入描述法 说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。 (2) 描述法:把集合中的元素的公共属性描述出来,写在大
10、括号内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 如:x|x-3>2,(x,y)|y=x2+1,直角三角形,?; 例2(课本例2) 说明:(课本P5最后一段) 思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素 (x,y)|y= x2+3x+2与 y|y= x2+3x+2不同,只要不引起误解,集合的代表元素也可省略,例如:整数,即代表整数集Z。 辨析:这里的 已包含“所有”的意思,所以不必写全体整数。下列写法实数集,R也是错误的。 说明:列举法与描述法各有优点,应该根据具体问题确
11、定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (三)课堂练习(课本P6练习) 三、 归纳小结与作业 本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。 书面作业:习题1.1,第1- 4题 高中数学说课稿3 各位评委老师你们好,我是第?号选手。我今天说课的题目是 ,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。 一,教材分析 这部分我主要从3各方面阐述 1, 教材的地位和作用 是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习
12、有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,?所以说本节课的学习在整个高中数学学习过程中占有重要地位! 2根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标(i)知识目标: II能力目标;初步培养学生归纳,抽象,概括的思维能力。 训练学生认识问题,分析问题,解决问题的能力 III情感目标;通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的创新品质,提高数学素养。 3, 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点 教学重点: 教学难点; 二,教法 教学方法是完成教学任务的
13、手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度! 学法 根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题
14、,研究问题,分析问题的能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。 三,教学程序 1, 创设情境,提出问题 让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。 2, 引导探究,直奔主题。(揭示概念) 参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出?!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的思想方法上有更深的交流。 3
15、, 自我尝试,初步应用 在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。 4 .当堂训练,巩固深化(反馈矫正) 通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华 5,归纳小结,回顾反思 从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。 知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的地位和作用,并且逐
16、步培养学生良好的个性品质目标。 ,6,变式延伸,布置作业 必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。 7板书设计 力图简洁,形象,直观,概括以便学生易于掌握。 四,教学评价 学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主
17、动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础, 以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦! 高中数学说课稿4 一、说教材 (1)说教材的内容和地位 本次说课的内容是人教版高一数学必修一第一单元第一节集合(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。
18、然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。 (2)说教学目标 根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标: 1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。 2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。
19、并通过"自主、合作与探究"实现"一切以学生为中心"的理念。 3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。 (3)说教学重点和难点 依据课程标准和学生实际,我确定本课的教学重点为 教学重点:集合的基本概念及元素特征。 教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。 二、说教法和学法 接下来则是说教法、学法 教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生
20、活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。 总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。 三、说教学过程 接着我来说一下最重要的部分,本节课的教学过程: 这节课的流程主要分为
21、六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。 第一环节:创设问题情境,引入目标 课堂开始我将提出两个问题: 问题1:班级有20名男生,16名女生,问班级一共多少人? 问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛? 这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。 待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知
22、识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。 安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。 很自然地进入到第二环节:自主探究 让学生阅读教材,并思考下列问题: (1)有那些概念? (2)有那些符号? (3)集合中元素的特性是什么? 安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。 让学生自主探究之后将进入第三环节:讨论辨析 小组合作探究(1) 让学生观察下列实例 (1)120以内的所有质数; (2)所有的正方形; (3)到直线 的距离等于定长 的所有的点;
23、 (4)方程 的所有实数根; 通过以上实例,辨析概念: (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。 (2)表示方法:集合通常用大括号 或大写的拉丁字母A,B,C表示,而元素用小写的拉丁字母a,b,c表示。 小组合作探究(2)集合元素的特征 问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征? 问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么? 集合中的元素必须是确定的 问题5:在一个给定的集合中能否有相同的元素?由此说明什么? 集合中的元素是不重复出现的 问题6:咱班的全体同学组成一
24、个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的 我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。 小组合作探究(3)元素与集合的关系 问题7:设集合A表示"120以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中? 问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达? a属于集合A,记作aA 问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达? a不属于集合A,记作aA 小组合作探究(4)常用数集及其表示方法 问题10:自然数集,正整数集,整数集,有理数集,实数集等
25、一些常用数集,分别用什么符号表示? 自然数集(非负整数集):记作 N 正整数集: 整数集:记作 Z 有理数集:记作 Q 实数集:记作 R 设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。 第四环节:理论迁移 变式训练 1.下列指定的对象,能构成一个集合的是 很小的数 不超过30的非负实数 直角坐标平面内横坐标与纵坐标相等的点 的近似值 所有无理数 A、 B、 C、 D、 第五环节:课堂小结,自我评价 1.这节课学习的主要内容是什么? 2.这节课主要解释了什么数学思想? 设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。
26、教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。 第六环节:作业布置,反馈矫正 1.必做题 课本习题1.11、2、3. 2.选做题 已知集合A=a+2,(a+1)2,a2+3a+3,且1A,求实数a 的值。 设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。 四、板书设计 好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下: 集 合 1.集合的概念 2.集合元素的特征 (学生板演) 3.常见集合的表示 4.范例研究 高中数学说课稿5 说教学目标 A、知识目标: 掌握等差数列前n项和公式的推导方法;掌握公式的运用
27、。 B、能力目标: (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。 (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。 (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。 C、情感目标:(数学文化价值) (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。 (2)通过公式的运用,树立学生"大众教学"的思想意识。 (3)通过生动具体的
28、现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。 说教学重点: 等差数列前n项和的公式。 说教学难点: 等差数列前n项和的公式的灵活运用。 说教学方法: 启发、讨论、引导式。 教具: 现代教育多媒体技术。 教学过程 一、创设情景,导入新课。 师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数
29、加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。 例1,计算:1+2+3+4+5+6+7+8+9+10。 这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。 生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。 生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7
30、+6+5+4+3+2+1。 上面两式相加得2S=11+10+。+11=10×11=110 10个 所以我们得到S=55, 即1+2+3+4+5+6+7+8+9+10=55 师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。 理由是:1+100=2+99=3+98=。=50+51=101,有50个101,所以1+2+3+。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢? 生3:数列an是等差数列,若m+n=p+q,则am+an=ap+aq。 二、教授新课(尝试推导) 师:如果已知等差数列的首项a1,项数为n,
31、第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。 生4:Sn=a1+a2+。an1+an也可写成 Sn=an+an1+。a2+a1 两式相加得2Sn=(a1+an)+(a2+an1)+。(an+a1) n个 =n(a1+an) 所以Sn=(I) 师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n1)d代入公式(1)得 Sn=na1+ d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相
32、类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?an=a1+(n1)d,Sn=na1+ d;这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。 三、公式的应用(通过实例演练,形成技能)。 1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算: (1)1+2+3+。+n (2)1+3+5+。+(2n1) (3)2+4+6+。+2n (4)12+34+56+。+(2n1)2n 请同学们先完成(1)(3)
33、,并请一位同学回答。 生5:直接利用等差数列求和公式(I),得 (1)1+2+3+。+n= (2)1+3+5+。+(2n1)= (3)2+4+6+。+2n=n(n+1) 师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。 生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以 原式=1+3+5+。+(2n1)(2+4+6+。+2n) =n2n(n+1)=n 生7:上题虽然不是等差数列,但有一个规律,两项结合都为1,故可得另一解法: 原式=11。1=n n个 师:很好!在解题时我们应仔细观
34、察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。 例3、(1)数列an是公差d=2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。 生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4 又d=2,a1=6 S12=12 a1+66×(2)=60 生9:(2)由a1+a2+a3=12,a1+d=4 a8+a9+a10=75,a1+8d=25 解得a1=1,d=3 S10=10a1+=145 师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用
35、构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。 师:(继续引导学生,将第(2)小题改编) 数列an等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n 若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。 2、用整体观点认识Sn公式。 例4,在等差数列an, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解) 师:来看第(1)小题,写出的计算公式S16=8(a1+a6
36、)与已知相比较,你发现了什么? 生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。 师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。 师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。 最后请大家课外思考Sn公式(1)的逆命题: 已知数列an的前n项和为Sn,若对于所有自然数
37、n,都有Sn=。数列an是否为等差数列,并说明理由。 四、小结与作业。 师:接下来请同学们一起来小结本节课所讲的内容。 生11:1、用倒序相加法推导等差数列前n项和公式。 2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。 生12:1、运用Sn公式要注意此等差数列的项数n的值。 2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。 3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。 师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大
38、家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。 本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。 数学思想:类比思想、整体思想、方程思想、函数思想等。 作业:P49:13、14、15、17 高中数学说课稿6 一、说设计理念 数学课程标准指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。 基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,
39、体验数学的应用价值。 二、教材分析: (一)教材的地位和作用 有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,标准把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。 (二)教学目标 1、联系生活情境了解扇形统计图的特点和作用 2、能读懂扇形统计图,从中获取有效的信息。 3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。 (三)教学重点: 1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效
40、信息。 2、认识折线统计图,了解折线统计图的特点。 (四)教学难点: 1、能从扇形统计图中获得有用信息,并做出合理推断。 2、能根据统计图和数据进行数据变化趋势的分析。 二、学情分析 本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。 三、设计理念和教法分析 1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。
41、2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。 四、说学法 数学课程标准指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。 五、说教学程序 本课分成创设情境,感知特点分析数据,理解特征尝试制图,看图分析实践应用,全课总结四环节。 六、说教学过程 (一)复习引新 1
42、、复习旧知 提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点? 2、引入新课 (二)自主探索,学习新知 新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。 第二步实践应用环节。在教学中,精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。根据统计图回答问题,是让学生运用到刚才学习到的知识来解决生活中的一些问题,并巩固刚才所学的知识,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合
43、理地进行推理与判断 三、课堂总结 四、布置作业。 五、板书设计: 高中数学说课稿7 【教材分析】 1、本节教材的地位与作用 本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间a,b上的连续函数,那么f(x)在闭区间a,b上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进
44、一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。 2、教学重点 会求闭区间上连续开区间上可导的函数的最值。 3、教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。 4、教学关键 本节课突破难点的关键是:理解方程f(x)=0的解,包含有指定区间内全部可能的极值点。 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1、知识和技能目标 (1)理解函数的最值与极值的区别和联系。 (2)进一步明确闭区间a,b上
45、的连续函数f(x),在a,b上必有最大、最小值。 (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。 2、过程和方法目标 (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。 (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。 (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。 3、情感和价值目标 (1)认识事物之间的的区别和联系。 (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。 (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作
46、用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。 【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求
47、知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。 【教学过程】 本节课的教学,大致按照“创设情境,铺垫导入合作学习,探索新知指导应用,鼓励创新归纳小结,反馈回授”四个环节进行组织。 高中数学说课稿8 一、教材分析 1、指数函数在教材中的地位、作用和特点 指数函数是人教版高中数学(必修)第一册第二章“函数”的第六节资料,是在学习了指数一节资料之后编排的。经过本节课的学习,既能够对指数和函数的概念等知识进一步巩固和深化,又能够为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因
48、为指数函数是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以指数函数不仅仅是本章函数的重点资料,也是高中学段的主要研究资料之一,有着不可替代的重要作用。 此外,指数函数的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体此刻细胞分裂、贷款利率的计算和考古中的年代测算等方面,所以学习这部分知识还有着广泛的现实意义。本节资料的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2、教学目标、重点和难点 经过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了必须的认知结构,主要体此刻三个方面: 知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。 素质维度:由观察到抽象的数学活动过程已有必须的体会,已初步了解了数形结合的思想。 鉴于对学生已有的知识基础和认知本事的分析,根据教学大纲的要求,我确定本节课的教学目标、教学重点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电网公司与新能源汽车充电桩运营商战略合作框架协议
- 生物医药企业转让定价税务审计与市场准入研究合作协议
- 网络文学创作平台虚拟作品账号转让协议
- 悬疑推理小说改编为手机游戏独家授权合同
- 抖音平台内容侵权仲裁条款合同
- 医疗培训项目进度调整补充合同
- 网络版权运营合作协议补充条款
- 抖音火花达人解约赔偿协议及商业权益分配及调整
- 婚前技术入股权益分割及财产分配协议
- 橡胶原料市场风险对冲补充协议
- 《消费者心理与行为分析》第五版 课件全套 肖涧松 单元1-10 消费者心理与行为概述 - 消费者购买决策与购后行为
- 塑料污染治理-洞察分析
- 反诈知识竞赛题库及答案(共286题)
- 稀土材料技术基础知识单选题100道及答案解析
- 量子储能材料的探索
- 2023年人教版六年级语文下册期末考试卷(A4打印版)
- ESG信息披露、表现和评级综合研究:国内外对比分析
- 2024年全国普法知识竞赛法律知识题库及答案
- DB5101-T135-2021城市公园分类分级管理规范
- 气象行业天气预报技能竞赛理论试题库资料(含答案)
- 水库工程土石方开挖施工方案
评论
0/150
提交评论