




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、河南工程学院课程设计时间序列分析课程设计学生姓名学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年6月2日考核项目考核内容得分平时考核(20分)出勤情况、实训态度、效率;知识掌握情况、基本操作技能、知识应用能力、状取知识能力实验一(20分)完成此实验并获得实验结果实验二(20分)完成此实验并获得实验结果实验三(20分)完成此实验并获得实验结果文档资料(20分)表达能力、文档写作能力和文档的规范性总评成绩指导教师评语:目录1 .实验一澳大利亚常住人口变动分析11.1 实验目的11.2 实验原理11.3 实验内容21.4 实验过程32 .实验二我国铁路货运量分析8.2.
2、1 实验目的82.2 实验原理82.3 实验内容92.4 实验过程103 .实验三美国月度事故死亡数据分析143.1 实验目的143.2 实验原理153.3 实验内容153.4 实验过程16课程设计体会.191 .实验一澳大利亚常住人口变动分析1971年9月1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。表1-163.267.955.849.550.255.449.945.348.161.755.253.149.559.930.630.433.842.135.828.432.944.145.536.639.549.848.82937.334.247.637.339
3、.247.643.94951.260.86748.965.465.467.662.555.149.657.347.345.544.54847.949.148.859.451.651.460.960.956.858.662.16460.364.67179.459.983.475.480.255.958.565.269.559.121.562.5170-47.462.26033.135.343.442.758.434.4(1)判断该序列的平稳性与纯随机性。(2)选择适当模型拟合该序列的发展。(3)绘制该序列拟合及未来5年预测序列图1.1 实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳
4、性与纯随机性,选择模型拟合序列发展。1.2 实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显小的特征做出判断的图检验法;另一种是单位根检验法。(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。1.3 实验内容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的范围有界。如果序列的时序图显示该序列有明显
5、的趋势性或周期性,那么它通常不是平稳序列。对自相关图进行检验时,可以用SAS系统ARIMAi程中的IDENTIFY语句来做自相关图。而单位根检验我们用到的是DF检验。以1阶自回归序列为例:XX;t该序列的特征方程为:-=0特征根为:九=当特征根在单位圆内时:J1该序列平稳。当特征根在单位圆上或单位圆外时:昨1该序列非平稳。对于纯随机性检验,既白噪声检验,可以用SAS系统中的IDENTIFY语句来输出白噪声检验的结果。(2)选择适当模型拟合该序列的发展先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。ARIMA过程的第一步
6、是要IDENTIFY命令对该序列的平稳性和纯随机性进行识别,并对平稳非白噪序列估计拟合模型的阶数。使用命令如下:procprintdata=example3_20;IDENTIFYVAR=peoplenlag=8minicp=(0:5)q=(0:5);run;(3)绘制该序列拟合及未来5年预测序列图模型拟合好之后,利用该模型对序列进行短期预测。预测命令如下:forecastlead=5id=timeout=results;run;其中,lead指定预期数;id指定时间变量标识;out指定预测后期的结果存入某个数据集。利用存储在临时数据集RESULT望的数据,我们可以绘制拟合预测图,相关命令如下
7、:procgplotdata=results;plotpeople*time=1forecast*time=2l95*time=3u95*time=3/overlay;symbollc=redi=nonev=star;symbol2c=blacki=joinv=none;symbol3c=greeni=joinv=nonel=32;run;1.4实验过程按照实验的过程运行程序,对程序结果的分析如下:(1)判断该序列的平稳性与纯随机性31L1TTJJIllLLiULJ-nI31TUIllXEiMlEHlkCIMJVB1ULLEPllT-,IlLIBF1-BJ.EFT-U1T-I5MU7*1图1-
8、11971年9月-1993年6月澳大利亚季度常住人口变动序列时序图时序图显示澳大利亚季度常住人口围绕在52千人附近随机波动,没有明显趋势或周期,基本可视为平稳模式MtHCWdlat1.3再L-aqCiXJdiridnC!Csrrelatloih-19S7fi5U3210123b&67a91StdErrorfllMaeoI鼻看鼻事*伴H金断鼻.鼻I口1-与-.97151.*Jm|1假。用口3D.KUil1-P-+/i餐卡餐I/U8次力HRjl一雕相独4B7睛5才”Q.33柒11事,50.105SB1.I.123S556.7aaia机帖9”1_|M?T7皿岬博u1-I-ie15.17672。口”1
9、1册Iiif用#1,91-I.I124591H3,9.1D7731I*|V.12V99513-.nMV1,I|MM1U1w.aitian-iEW1*HI.Ie.iaiez15-15,w岫=03心-11*Ila.iai?aiHIQF*F1.I|Bal313951/T九出IBM也1a.r|B.1&H4UU118M.公11fc*I*|I.1315W199273A3一1.,|h|A.13l95d20ILUbHQU0O11|V.123362l222HA.W史1.HIM|1。加也-bV5S11*|is13?Wb+dhwarKStunstandaf-d?fgfs图1-2序列自相关图自相关图显示该序列的自相关
10、系数一直都比较小,始终控制在2倍的标准差范围以内,故认为该序列是平稳序列AufjvnrtdOilEBjiFullerunitHMt11VpeLagsRhqlf*irRhgTamPitFZeroManis13.UI11W九BV9G2,/2W.ldU/U1-4P?97rth+15U1.5#以1174$inq【eMmiv也-95.32。小。璃7九12cm51.250,00101-8.5624i.nw-d.MJimm5yB.BHBTrb;nii电U.UIttiCJLagPILhiSq由uEcart*6H,刖茴-n,OTSR.RASR.aMPL7的A.IM的,酊力1?2,28IS机(VI电丁目.831a
11、,5?*D,QS76.034-P.013FI.1B8ISIHII.I12U-U.U14)叩.呼*-ILM3dU.UU/口扎MH三电tK图1-4白噪声检验输出结果可以看到延迟6阶、12阶的检验P值均小于0.05,故拒绝原假设,认为该序列为非白噪声序列(非纯随机序列)(2)选择适当模型拟合该序列的发展MiniimjiinfrnationCriterionLagsMAUMA1MA2NA3Mfl4MA5AR06.QU38B66.630696.068645-9311365-997537AR16.832口门6,35806.S3B1465.Q29665.97S3E26.023711AR26.1298526.
12、07U8236.8355745.9791976.028S786-059939AR36.B299765,988365.9S0536,02676.D748626_09920dAR45.9642685.9945831232626.9419276.鼬8885fi.092589HR55.9r7012fi.K77780.B4785iT0J1H41M26.1OTZ8BErrorseriesmodel:AR(7)MinimumTableValue:BIC(1,3)-5.9296图1-5IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信
13、息量相对于最小的是ARMA(1,3)模型ConditifthlLat占EtirutinnStandardApproxPdrdineLerEstimateErrortUdliikPr11|LayNU&3.nm2.9W4817.97ChiSqA口.有1?Q;咫。-fl.neiii1?向35g0b19?J391UD.93114-B.IKJb2*o.vm-tfi.maPI.A139.2ie-8.091妣-0.011ioeesa-n.n&iflLM3n_BiB-o.eEifl-021f*0,26Autocvrrelatiovi5图1-8ESTIMATE命令输出的系数矩阵图1-9ESTIMATE命令输出的
14、残差自相关检验结果从输出结果可以看出由于延迟各阶的LB统计量的P值均显著大于(a0.05),所以该拟合模型显著成立。Mod&lforvariablepeopleEstinatedMean53.(91093AutaregrBssiucFactorsFactord:1-0.3ii642MovingAverageFactorsFactor1:1-0.62415+0.25369B*(2)+0.3953图1-10ESTIMATE命令输出的拟合模型形式该输出形式等价于:为=(1-0.62415B0.253693B0.2953E3)t或记为:X=.一0.62415+0.253693i+0.2953Uforu
15、ariablsptople(3)绘制该序列拟合及未来5年预测序列图0b5ForecastStdError95常ConfidPnceLimits8965,379318.239929.6298101.12899057.728N18.930320.623S91,829191U7.072H19.14709.EM5。84.59979250-953720.83191Q.125691.78189352.298321.024111.091893.50M7图1-11FORECAS命令输出的5年预测结果Forecasts拟合效果图如图1-11:J*4HLl-PJi114d醴Si用H河IklianXL+1U.1E1
16、,IH,日UJiT4MUElAltf?iTLQF1退卜图1-12拟合效果图2 .实验二我国铁路货运量分析我国19492008年每年铁路货运量(单位:万吨)数据如表2-1所示表2-1年货运量年货运量年货运量194955891969531201989151489195099831970681321990150681195111083197176471199115289319521321719728087319921576271953161311973831111993162794195419288197478772199416321619551937619758895519951659821956
17、246051976840661996171024195727421197795309199717214919583810919781101191998164309195954410197911189319991675541960672191980111279200017858119614498819811076732001193189196235261198211349520022049561963364181983118784200322424819644178619841240742004249017196549100198513070920052692961966549511986135
18、63520062882241967430891987140653200731423719684209519881449482008330354请选择适当的模型拟合该序列,并预测20092013年我国铁路货运量2.1 实验目的掌握用SAS软件对数据进行相关性分析,掌握对非平稳时间序列的随机分析,选择合适模型,拟合序列发展。2.2 实验原理ARIMA真型的预测和ARMA真型的预测方法非常类似。ARIMA(p,d,q)模型的一股表小方法为:(B)3dxt-o(B);t同时可以简记为:-(B)式中,代为零均值白噪声序列。我们可以从上式看出,ARIMA模型的实质就是差分与ARMA真型的组合,这说明任何非
19、平稳序列如果能通过适当阶数的差分实现差分后平稳,就可以对差分后序列进行ARMAK型拟合。(1)对差分平稳后的序列可以使用ARIMA模型进行拟合,ARIMA建模操作流程如图2-1所示。分析结束图2-1建模流程2.3 实验内容由于ARMAK型是ARIMA1型的一种特例,所以在SAS系统中这两种模型的拟合都放在ARMAS程中。先利用时序图分析模型是否平稳,可以运用实验一的程序来实现。再对该序列进行1阶差分运算,同时考虑差分后序列的平稳性,添加如下命令:difhuoyunliang=dif(huoyunliang);命令difhuoyunliang=dif(huoyunliang);是指令系统对变量进
20、行的1阶差分后的序列值赋值给变量difhuoyunliang,其中dif()是差分函数。利用差分函数得出平稳模型。再对模型进行定阶和进行预测。模型定阶:identifyvar=difhuoyunliang(1)nlag=8minicp=(0:5)q=(0:5);模型预测:forecastlead=5id=time;2.4 实验过程(1)判断序列的平稳性time图2-2我国19492008年每年铁路货运量时序图通过分析可知,该时序图有明显的上升趋势,所以为非平稳序列。在此,对该序列进行1阶差分运算。difhuoyunliangtime图2-31阶差分后序列时序图-utocorrei3at3onc
21、值Jl回-15-rfl54,I1,0j5tCtFror0712525931.O0GOO1|1申+R胃鼻4*M*+1QJMg。sfl,5苏E21|I-tt-lk412117143.53.0.1644111*.GLJL&3E。30.073S21CL1&2灾珀40fil22M11”昭ThM725幻力6J490.13791647,G1233459BDfe1731113BJ9515曲恬引谕11*0i+lfi57IM=101650,14267*1,0699M9*112515+7-.157911#中1e+172012JO5153011“1iQ1744521J-117127-0164411GU751OT123
22、65OSas0.C5465r0.175224niAirktth口stauidjrderror:s图2-41阶差分后序列自相关图通过分析可知,时序图显示差分后序列没有明显的非平稳特征;自相关图显示序列有很很强的短期相关性,所以可认为1阶差分后序列平稳对平稳的1阶查分序列进行白噪声检验,检验结果如图ChiSquarewPrChiSq-Aurtocorrelations”,M6&,00120.5M0.164o.g0.1122,28120.0098也054-0,143*0.158-o.mAutocorrelfftLaiCheckLlhitc0,016C.173加电54图2-51阶差分后序列白噪声检验默
23、认显著性水平为0.05的条件下,由于延迟6阶、12阶的P值为0.0012和即差分后的序列还0.0098,小于0.05,所以该差分后序列不能视为白噪声序列,蕴含着不容忽视的相关信息可供提取。(2)对平稳非白噪声查分序列进行拟合-UlZLITlLiriInforircrtronCrzLteriofiLagsMfl日MA1忖42M3MA4rA5ARa180711717.9140717776?18.02378AR117.9339717-S9G7317.32218.0367318.07564AR117.3S9G317.M4G618.000718W22G18.07117IS.11398AR317.2031
24、7.S18.e508518.11991IE.3441IS.J7115AR417.191e715.0395418.0931318.1534318;纵的18.233AR518.C2596IS.0615918.J2S8213.17126IS.2397218.317Error&),inihiimtTableIalueBIC(1,O)-17,83397图2-6IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对于最小的是ARMA(1,0)模型。考虑到前面已经进行的1阶差分运算,实际上是用ARIMA(1,1,0)模型拟合原序
25、列ConditionalILeeistSquareEstimationParciiiieteiEstimateStandardErrort,.-alLie即p口.Pr|t|La目U564名.61946.52.9C%00530AR1,10.519830.115294.51V.OOOJ.1图2-7ESTIMATE命令输出的未知参数结果2712.,2S754石皿597372+79)口24.41legdeterminant.ConEtsntEstinwre0tdErroiErtiniataAICiBC加毗针1ofRe5idualf;rrtlCandSECdonrtinclude图2-8ESTIMATE
26、命令输出的拟合统计结果jfkijrr-eirtiLngSqu-arc口FAvtocorrelflticns6&O.-6.101-0,MSSe.e&i0-US7121311口门:MCL074-U-lfcl-4J-UJLV。-IB1Mlil170.SM|0020CI.OS45a.um他总U-L1J1413Ml%0HW2J1,118-0,CXU也朋科-0.003-dA09图2-8ESTIMATE命令输出的残差自相关检验结果显然,拟合检验统计量的P值均显著大于显著性水平0f(320.05),所以可以认为改残差序列即为白噪声序列,显著性检验显示两参数均显著,这说明ARIMA(1,1,0)模型对该序列建模
27、成功。YadelforyfiriblehuayunilringEtimartei/把an5(HS.6J6Period(sJofDifferencing1Airtorsg|xesi仁FactorrFactor1:1-O.513B3B,4(l)图2-10ESTIMATE命令输出的拟合模型形式输出结果显示,序列X的拟合模型为ARIMA(1,1,0),模型口径为:xt)1-0.51983B等价记为:xt=1.5198X-0.51983工t利用拟合模型对序列做5期预测,结果如图2-10:Forecast*:fofkarl5hlehuo;unliangoLsFecast5tdError注.Con-fide
28、nc-eLlinits6J3+1444.412357(M0.9711643通54.网。urbin-Uaton0.692QPfDUDU1.09OQ图3-2序列关于变量t的线性回归模型的最小二乘估计结果输出结果显示,DW疏计量的值等于0.6020,输出概率显示残差序列显著正相关,所以应该考虑对残差序列拟合自相关模型。(2)建立关于时间的回归模型t值和t统计量的P值,输出结果的详细分析:该部分输出信息包括误差平方和(SSE、自由度(DFE、均方误差(MSE、根号均方误差(RootMSE、SBC信息量、AIC信息量、回归部分相关系数平方(RegressR-Square)、总的相关系数平方(TotalR
29、-Square),DW统计量及所有待估计参数的自由度、估计值、标准差、如图3-3所示DependentUariabLedeathOrdLiidruLbJbLSqurirSEbLLiiHtS鹫E幅E诋REgE55R-Squdrcnurtiiii-warsniiSW6二DFE712167553RootUSE1*721258.B127AIC1255.73AMA.972&lotalFI-Square。*9了。H.747IJNOTE:Nointcrcoptterraisued.R-squares3F融redFincd.HdridlJleDFE5llidtetinei1.*jU6VStandardAppr
30、oxErrorIValuePr|C|u.吃MSv.2u.num图3-3普通最小二乘估计结果回归误差分析:该部分共输出四个信息:残差序列自相关图、逐步回归消除的不显著项报告、初步均方误差(MSE、自回归参数估计值。如图所示:Estinatesfftutccorrelations1rigCoudririiiLPCurre*JitiDii-19R7G0213791,000000I+*+IR4CkkMrlFlInliMtluiinF由。toreq广中TernsLaqiE5tlmtetujjiuoFr|t|2。网的6y一修分31111970.77a.WO5H5器脑-1L?7腌a.S.B750M!1LD1
31、B.31JI5PreliminaryIMSE555OSSEstinatesofAutorEgressiveParanetersUtandardLaguo?HicientLrrftrtUalu。1将肚衲ILM的的图3-4自回归误差分析输出结果输出的残差序列自相关图显示残差序列有非常显著的1阶正相关性。逐步回归消除报告显示除了延迟1阶的序列值显著自相关外,延迟其他阶数的序列值均不具有显著的自相关性,因此延迟25阶的自相关项被剔除。最终拟合模型如下图3-5所示:niyorithmconvergedTkl4ximmIikflihnnrjFqtimtpfsst34291551.5DFEMSE51gzMR
32、oathse719.9261VSBC1159“7中57”ftC1155.15ZMRegressHSquare0.7375TotalR-Square8.99QCDurbinWatwn1.6283NOTE:Ndintercepttrnisused-R-squaresareredFind+DariableDFEstiiaatESLdlkddrdErrur_tUalueApproxFr111tine11.4E969.106713.96|l|tine11.8960,10621&.O2图3-5最终拟合模型输出结果拟合模型为:Xt=1.4896tUti.i.dut=0.8757ut:N0,518294拟合图
33、如图3-6JAN1973MAY1973SEP1973JAN1974MAY1974SEP1974JAN1975MAY1975SEP1975JAN1976MAY1976SEP1976JAN1977MAY1977SEP1977JAN1978MAY1978SEP1978JAN1979time图3-6拟合效果图课程设计体会通过一周的实训I,让我对应用时间序列这一门课程有了更深的理解和掌握,让我从前一段的理论知识学习进入到了应用与实践,实践出真知,平常所学的理论只有通过实践,自己动手之后才能真正感觉到知识的乐趣。在整个实验过程中,所有的代码都是由我来负责编写及修改的,同时,我也负责对自己用代码得出的结果进
34、行截图以及进行结果分析。实验一要求我们绘制时序图,判平稳、进行纯随机性检验、绘制样本自相关图、模型识别以及模型定阶。通过观察时序图的是否具有明显的趋势性或周期性来得出模型是否平稳;样本自相关图显示出来的性质可以检验我们通过时序图得出的结论是否正确,之后的纯随机性检验是为了确定平稳序列是否值得我们继续分析下去;之后进行相对最优定阶,当然这个定阶,只能作为定阶参考,因为使用这种方法定阶未必比经验定阶准确,之后得出拟合模型的具体形式及进行序列预测。实验二是建立在实验一的基础上来做的,实验二我们选用的是ARIMA真型来做的,但是与实验一不同的是,实验二对模型进行了差分运算,因为差分运算可以将一个非平稳
35、序列转化平稳序列,之后对差分序列进行ARMA1型拟合,这样结合实验一和实验二我们便可以得出实验二模型。实验三我们选择的是残差自回归模型进行拟合的,通过查阅,我知道了残差自回归模型是一种拟合非平稳时间序列的方法,它既能提取序列的确定性,又能提取其随机性信息,不仅提高了模型的拟合精度,同时也使的结果变得更实际,也更易解释。但是在实际操作的过程中,我发现这个模型拟合确实比其他模型拟合难,以至于自己对得出的结果都无法肯定对错。通过三个实验,只能说让我初步的了解到了这门课的有意思之处,同时,也让我对SAS这个软件有了初步的认知,就比如说在操作过程中一个不显眼的小字符错了,程序就会一遍遍的报错,但是在实际
36、操作过程中,我们又非常容易忽视掉这些,从而导致我们有时候会花费许多时间在这上面。所以我们平常思考问题做事情都要认真严谨。当然在整个实训过称中,要非常感谢老师对我们的教导,通过老师的指导,才能让我们顺利的完成这次实训。为期一周的实训已经结束了,但由于端午节放假,实训时间就缩短为了3天,所以时间上很紧张。但是我们还是完成了试验,收获了很多,一方面学习到了以前没有用过的SAS次件,另一方面把所学的时间序列分析在实际中得到了应用,还有团队合作能力得到了加强。第一大老师介绍了实训的软件SAS并讲了一些基础知识和基本的操作步骤,并把时间序列的知识进行了大致的回顾。接下来上机做了一些简单的练习,练习了一下S
37、AS的简单操作步骤,知道了怎么把数据导入数据集,接着练习了第二章的课后习题,通过输出的序列的时序图和序列自相关图来判断该序列的平稳性和纯随机性。在这个过程中需要调试程序,刚开始输入了课本上的程序,但运行有错误,仔细查看不是字母打错就是缺少标点符号,经过几次不断地改进,得到了正确的结果。第二天老师讲解了平稳性序列的分析,对建模步骤和具体要用到的函数做了详细说明,由于是三个人合作完成一份实验,所以我的工作就是了解整个试验建模的过程和思想然后编写文档,把我队友软件输出的结果加以分析。这是三个人完成的第一个试验,所以速度上不是很快。在期间也遇到了很多问题,比如我们对模型的选择、对结果的分析都存在争议,
38、但最后都得到了解决。第三天时间更加的紧张,由于昨天一天做了有个试验,可是一共有三个试验,所以在第三天也就是最后一天要完成另外两个试验。这两个试验是第四章非平稳序列的随机分析,好在有了实验一的基础,程序就相对简单了一些,但我编辑文档的工作量就很大。在我和队友交流了经过调试后要选用的模型和结果分析后我就开始了两个试验的文档编辑工作。期间有对自己所选模型是否是最合适的模型产生过怀疑,但通过和同学老师的交流得到了解决。最后的一步工作就是对整个文档的排版,因为去年参见过数学建模,所以在排版方面还有一定的基础,按照实验报告的格式进行了排版。总结一下,就我自己而言之前对时间序列这门课的掌握程度还不高,通过实
39、训得到了提高,但平心而论对知识的把握还是不够完善和系统,希望以后的学习中能得到提高。还要感谢老师,对我们完成试验的帮助和对疑问的解答,老师对我们真的是认真负责,谢谢老师!经过一周的学习与实践,应用时间序列分析这门科学让我受益颇多。首先实践阶段第一个接触的就是SASft件,在SAS系统中有一个专门进行计量经济与时间序列分析的模块。同时,由于SAS系统具有全球一流的数据仓库功能,因此在进行海量数据的时间序列分析时具有很大的优势。而在学习SAS软件时遇到了不少的障碍,经过老师的讲解后还是有许多功能不是太了解,导致在进行实践操作时出了不少的错误,后来经过咨询老师解决了问题。在除了学习SAS软件外,我们需要进一步掌握的是时间序列中的一些案例模型。在进行分析时,有许多都用到了ARMA型,这时我们就需要结合理论知识与SAS其中拟合序列的发展,确定并检验序列的平稳性等等都是需要解决的问题。在解决这些问题时,每一步都是一个需要细心与耐心的过程。当其中任何一处出现小的失误都会使结果出现错误,进而解决不了该问题。可以说这次实训不仅使我学到了知识,丰富了经验。也帮助我缩小了实践和理论的差距。我收获了很多,一方面学习到了许多以前没学过的专业知识与知识的应用,另一方面还提高了自己动手的能力。本次实训I,是对我能力的进一步锻炼,也是一种考验。从中获得的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行招聘技术试题及答案
- 银行应聘柜台笔试题目及答案
- 银行业高管面试题及答案
- 银行信科招聘面试题及答案
- 输血专业试题及答案
- 乐理专业试题及答案
- 专业教师招聘试题及答案
- 病理小专业试题及答案
- 北京市第四中学2025-2026学年高二上学期开学考试 数学试题(含答案)
- 职称专业知识试题及答案
- 2025股权技术入股合同
- 钢桁架桥制作施工方案
- 2025-2026学年北京版(2024)小学体育与健康一年级全一册教学计划及进度表(第一学期)
- 地砖铺贴分包合同协议书
- 2025年山东省青岛市中考英语真题
- 煤矿智能掘进员内部技能考核试卷及答案
- 新《斜视弱视学》期末考试复习题库(含答案)
- 幼儿园数学活动《6和7的认识》课件
- 大语言模型与安全 课件 第3章 多模态大语言模型
- 肠菌移植治疗炎症性肠病专家共识解读课件
- 人民医院开展“改善就医感受提升患者体验”主题活动实施方案
评论
0/150
提交评论