




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.1从自然数到有理数一、教学目标1 .理解有理数产生的必然性、合理性及有理数的分类;2 .能辨别正、负数,感受规定正、负的相对性;3 .体验中国古代在数的发展方面的贡献。二、教学重点和难点重点:有理数的概念难点:建立正数、负数的概念对学生来说是数学抽象思维一次重大飞跃。三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数、分数和零(小数包括在分数之中,它们都是由于实际需要而产生的.为了表
2、示一个人、两只手、,我们用到整数1,2,4.87、为了表示“没有人”、“没有羊”、,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二师生共同研究形成正负数概念某市某一天的最高温度是零上5,最低温度是零下5.要表示这两个温度,如果只用小学学过的数,都记作5,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运进”和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生
3、思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5表示零下5,黑色5表示零上5;乙同学说,在数字前面加不同符号来区分,比如,5表示零上5,5表示零下5.其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5记作+5(读作正5或5,把零下5记作-5(读作负5.这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8
4、848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.(三介绍有理数的有关概念。1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数、负整数和零,同样分数包括正分数、负分数。2.给出有理数概念整数和分数统称为有理数。3.有理数
5、的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零。并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.(四运用举例 变式练习例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+617,0.33,0,-53,-9 (五小结教师引导学生回答如下问题:本节课学习了哪些基
6、本内容?学习了什么数学思想方法?应注意什么问题?由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0.六、练习设计1.北京一月份的日平均气温大约是零下3,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.在以下说法中
7、,正确的是 A .非负有理数就是正有理数B .零表示没有,不是有理数C .正整数和负整数统称为整数D .整数和分数统称为有理数6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1向左移动12米应记作什么?(2“记作8米”表明什么?七、教学后记这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择
8、上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化。1.2数轴一、教学目标1 .理解数轴、相反数的概念;2 .掌握数轴的画法、数轴上的点与有理数的关系;3 .会用数轴上的点表示相反数,探索他们的位置关系;4 .感受数形结合与转化。二、教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.三、教学手段现代课堂教学手段四、教学方法启
9、发式教学五、教学过程(一从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容数轴.(二讲授新课让学生观察挂图放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10;在0下5个刻度,表示-5.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.
10、具体方法如下(边说边画:1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边用这点表示0(相当于温度计上的0;2.规定直线上从原点向右为正方向(箭头所指的方向,那么从原点向左为负方向(相当于温度计上0以上为正,0以下为负;3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,提问:我们能不能用这条直线表示任何有理数?(可列举几个数在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P
11、 表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P 对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素原点、正方向和单位长度,缺一不可.(三运用举例 变式练习例1 指出数轴上A ,B ,C ,D ,E 各点分别表示什么数.例2 画一个数轴,并在数轴上画出表示下列各数的点: (10.5,-25,0,-0.5,-4,25,1.4; (2200,-150,-50,100,-100. 想一想:-4与4有什么相同和不同之处?它们在数轴上的位置有什么关系?-呢?(四介绍相反数的概念和性质。如果两个数只有符号不同,那么我们称其中一个数
12、为另一个数的相反数,也称这两个数互为相反数。比如,-25的相反数是25,4是-4的相反数。注意,零的相反数是零。观察归纳得到相反数性质: 在数轴上,表示互为相反数(零除外的两个点,位于原点的两侧,并且到原点的距离相等。 例如,表示-100和100的点分别位于原点的左侧和右侧,到原点的距离都是100个单位长度。 例:求5,0,-29的相反数,并把这些数及其相反数表示在数轴。 课堂练习见课本第12-13页最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.(四小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了
13、数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.六、练习设计1.在下面数轴上:(1分别指出表示-2,3,-4,0,1各数的点.(2A ,H ,D ,E ,O 各点分别表示什么数?2.在下面数轴上,A ,B ,C ,D 各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1-5,2,-1,-3,0; (2-4,2.5,-1.5,3.5;七、教
14、学后记从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.1.3绝对值一、教学目标1 .理解绝对值的概念与几何意义;2 .会求一个数的绝对值(不涉及字母及绝对值等于某一正数的有理数;3
15、 .探索绝对值的简单应用。二、教学重点和难点重点:正确理解绝对值的概念难点:绝对值的实际意义是什么?为什么它是正数或零?这些问题学生不好理解,因此,绝对值的概念也是难点。三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一从学生原有的认知结构提出问题1、下列各数中:+7,-2,31,-8.3,0,+0.01,-52,121,哪些是正数?哪些是负数?哪些是非负数? 2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数: -3,4,0,3,-1.5,-4,23,23、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?4、怎样表示一个数的相反数?(二师生共同研究
16、形成绝对值概念例1 两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正和所在位置,分别记作+5千米和-4千米。这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向。当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离 这里的5叫做+5的绝对值,4叫做-4的绝对值。例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是1.01米,乙侧得的结果是0.98米,甲测量的差额即多出的数记作+0.01米,乙测量的差额
17、即减少的数记作-0.02米。如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0,自然这个差额0的绝以值是0 现在我们撇开例题的实际意义来研究有理数的绝对值,那么,+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;0的绝对值是0,表明它到原点的距离是0一般地,一个数a 的绝对值就是数轴上表示a 的点到原点的距离为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值。如+5的绝对值记作|+5|,显然有|+5|=5;-0.02的绝对值记作
18、|-0.02|,显然有|-0.02|=0.02;0的绝对值记作|0|,也就是|0|=0a 的绝对值记作|a |,(提醒学生a 可以是正数,也可以是负数或0求下列各数的绝对值:-1.6,58 ,0,-10,+10. 由例3学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0这也是绝对值的代数定义,把绝对值的代数定义用数学符号语言如何表达?把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步1、用a 表示一个数,如何表示a 是正数,a 是负数,a 是0?由有理数大小比较可以知道:a 是正数:a 0;a 是负数:a 0,那么a =a ;
19、如果a 0,那么a =-a ;如果a=0,那么a =0练习: 求8,-8,41,-41,0,6,-,-5的绝对值例4 求绝对值等于4的数。分析:因为数轴到原点的距离等于4个单位长度的点有两个,即表示+4的点和表示-4的点,所以绝对值等于4的数是+4和-4。 (三课堂练习1、下列哪些数是正数? -2,31+,3-,0,-2+,-(-2,-2- 2、计算下列各题:|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-21|-31|; |-21|-2|;21|-21|。(四小结指导学生阅读教材,进一步理解绝对值的代数和几何意义 六、练习设计 1、填空:(1+3的符号是_
20、,绝对值是_; (2-3的符号是_,绝对值是_; (3-21的符号是_,绝对值是_;(410-5的符号是_,绝对值是_ 2、填空:(1符号是+号,绝对值是7的数是_; (2符号是-号,绝对值是7的数是_; (3符号是-号,绝对值是0 35的数是_; (4符号是+号,绝对值是131的数是_; 3、(1绝对值是43的数有几个?各是什么?(2绝对值是0的数有几个?各是什么? (3有没有绝对值是-2的数? 4、计算:(1|-15|-|-6|; (2|-0.24|+|-5.06|; (3|-3|-2|; (4|+4|-5|; (3|-12|+2|; (6|20|-21|1.4有理数大小的比较一、教学目标
21、:1 .从生活实例中探索利用数轴比较有理数大小的规律;2 .通过观察、猜测、验证、概括用绝对值比较有理数大小的法则;3 .了解关于有理数大小比较的简单推理及书写。 二、教学重点和难点重点:比较有理数的大小的各条法则。.难点:如何比较两个负数(尤其是两个负分数的大小的绝对值法则。. 三、教学手段现代课堂教学手段 四、教学方法启发式教学 五、教学过程(一、从学生原有的认识结构提出问题。 1.数轴怎么画?它包括哪几个要素?2.大于0的数在数轴上位于原点的哪一侧?小于0的数呢? (二、师生共同探索利用数轴比较有理数大小的法则。1、在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5在-2上边
22、, 5高于-2;-1在-4上边,-1高于-4.下面的结论引导学生把温度计与数轴类比,自己归纳出来: (1在数轴上表示的两个数,右边的数总比左边的数大. (2正数都大于零,负数都小于零,正数大于负数。 2、运用举例,变式练习。例1 观察数轴,能否找出符合下列要求的数,如果能,请写出符合要求的数: (1最大的正整数和最小的正整数; (2最大的负整数和最小的负整数; (3最大的整数和最小的整数; (4最小的正分数和最大的负分数.在解本题时应适时提醒学生,直线是向两边无限延伸的. 3、课堂练习。例2.在数轴上画出表示下列各数的点,并用“”把它们连接起来。 4.5,6,-3,0,-2.5,-4通过此例引
23、导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“04这样的式子.(三师生共同探索利用绝对值比较负数大小的法则。1、利用数轴我们已经会比较有理数的大小。由上面数轴,我们可以知道-4-30.4|3|引导学生得出结论:两个负数比较,绝对值大的反而小。这样以后在比较负数大小时就不必每次再画数轴了2、运用举例 变式练习。例3、 比较-421与-|3|的大小例4、 已知a b 0,比较a ,-a ,b ,-b 的大小 例5、 比较-32与-43的大小3、课堂练习(1比较下列每对数的大小:32与52;|2|与36;-61与112;73-与52-(2比较下列每对数的大小:-
24、107与-103;-21与-31;-51与-201;-21与-32(四、小结先由学生叙述比较有理数大小的两种方法利用数轴比较大小和利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定,学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了。(五布置作业 六、练习设计1.比较下列每对数的大小:2.把下列各组数从小到大用“”号连接起来: (13,-5,-4; (2-9,16,-11;3.下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.4、判断下列各式是否正确:(1|-0.1|-0.01|; (2|- 31|41; (332-7
25、15、较下列每对数的大小:(1-85与-83;(2-113与-0 273;(3-73与-94;(4- 65与-1110;(5- 32与-53;(6- 97与-1196、写出绝对值大于3而小于8的所有整数。七、教学后记在传授知识的同时,一定要重视学科基本思想方法的教学,关于这一点,布鲁纳有过精彩的论述,他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力,不但使数学学习变得容易,而且会使得别的学科容易学习,显然,按照布鲁纳的观点,数
26、学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力。为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授,本课中,我们有意识地突出“分类讨论”这一数学思想方法,以期使学生对此有一个初步的认识与了解。第一章 从自然数到有理数的复习课一、目的要求进一步理解并运用有理数、数轴、相反数、绝对值等概念,会比较有理数的大小。二、内容分析小结与复习分作三部分。第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,还有近似数与有效数字的问
27、题,从而给出全章内容的大致轮廓,第二部分围绕有理数运算这一中心,提出了全章的三条教学要求,第三部分针对这一章新出现的思想、内容、方法等提出了5点应注意的问题。三、教学过程我们已经学过了有理数全章内容。概括起来说,这一章我们学的是有理数的概念及其运算。这节课我们将复习有理数的意义及其有关概念。复习提问:1.为什么要引入负数?温度为-4是什么意思?答:为了表示具有相反意义的量。温度为-4表示温度是零下4摄氏度。2.什么是有理数?有理数集包括哪些数?答:整数和分数统称为有理数。有理数集包括:3.什么叫数轴?画出一个数轴来。答:规定了正方向、原点和单位长度的直线叫数轴。图略。4.有理数和数轴上的点有什
28、么关系?答:每一个有理数都可以用数轴上唯一确定的点来表示。但反过来以后可以看到,数轴上任一点并不一定表示有理数。表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。5.怎样的两个数叫互为相反数?零的相反数是什么?a的相反数是什么?两个互为相反数的和是什么?答:只有符号不同的两个数叫做互为相反数;并说其中一个是另一个的相反数。零的相反数是零,a的相反数是-a。两个互为相反数的和为零。6.有理数的绝对值的意义是什么?如果两个数互为相反数,那么它们的绝对值有什么关系?试举例说明。答:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作|a|。如|-6|=6,
29、 |6|=6;一般地,一个正数的绝对值是它本身。一个负数的绝对值是它的相反数。0的绝对值是0。用式子表示就是:如果a0,那么|a|=a;如果ab0,那么-a_-b(29与-13的和的绝对值是_;(39与-13的绝对值的和是_;(4在数轴上绝对值小于3的整数有_;(5在数轴上绝对值等于4的整数有_;(6当a_0时,-aa。解:(1;由负数的绝对值大的反而小而得。(提问:为什么?(24;即求|9+(-13|。(322;即求|9|+|(-13|。注意:不要把两者混淆。(4-2,-1,0,1,2;由数轴上(绝对值小于3的整数点而得到。(54,-4;(提问;为什么?(6。因为a的相反数大于a,故a是负数
30、。课堂小结:阅读教科书第132页“小结与复习”中第一部分内容提要第l5点。四、课外作业复习题二A组第1至6题,第11题。选作题:复习题二B组第1题。2.1有理教的加法(一教学目标1、通过实例经历加法法则的产生过程;2、掌握有理数的加法法则;3、会利用加法法则求两个有理数的和,会在数轴上表示两个有理数相加。重点与难点重点:有理数的加法法则。难点:有理数加法法则的发生过程比较复杂,异号两数相加包括绝对值相减、确定和的符号,学生不易掌握,容易发生差错,是本节数学的难点。教学过程一、引入中国国家足球队在两场友谊比赛中,第一场净胜2球,第二场净负1球,请问两场比赛后,中国国家足球队合计胜几球?你能否用一
31、个算式来表示最终结果?如何表示?这个算式与小学时学过的加法有何不同?由此引出课题。二、讲授新课1、出示课本中的引例,请两位同学分别说出星期一和星期二这两天水泥进货的合计数量、出货的合计数量,并列出算式.根据学生列出的算式及结果,分组讨论,用自己的语言叙述同号两数相加的方法,教师归纳法则.2、继续考虑引例中星期一、星期二每一天的实际库存是增加了还是减少了?是多少?怎么用算式表示? 类比于同号两数相加法则,由学生讨论、归纳异号两数相加法则,教师可对确定符号和确定绝对值的值两部分作适当的提示,启发学生观察和的符号,绝对值和两个加数的符号与绝对值的关系。教师归纳法则,并进一步提出问题:两个有理数相加,
32、除了同号、异号两种情况外,还有什么情形?引导学生从数的正、零、负三类情形进行讨论.教师完整地板书有理数的加法法则,并指出建立有理数加法的必要性和法则的合理性.然后让学生朗读法则,口答课本中“做一做”的练习.3、用引例的数据讲述有理数加法的数轴表示,更直观地反映有理数加法法则的合理性.4、例题.例1 计算下列各式:(1 (一11+(一9; (2 (一3.5+(+7;(3(一1.08+0; (4(23+(23-教师注意解答过程的示范,然后完成课本的“课内练习”,其中第3题要求学生板演,再由学生订正错误。例2在数轴上表示下列有理数的运算,并求出计算结果.(1(一3+(4; (24+(一5.本题要求学
33、生按要求在数轴上表示求解后,再用法则计算复查.例3(补充小慧原来在银行存有零用钱350元,上个月取出了120元,这个月计划再存人50元,请用有理数的加法计算:(1到上月底小慧在银行还有多少存款?(2到这个月底小慧将有多少存款?5.课内练习(补充计算:(1(一1.37+0;(2(-68+(-42(3(一27+(+102;(4(-4.2+(+2.5(5(+14+(-34; (6(-256+(+313三、小结1.有理数的加法法则:2.有理数加法的数轴表示;3.有理数相加,先确定符号,再算绝对值;4.有理数的加法运算,和不一定大于加数.四、布置作业2.1 有理数的加法(二教学目的1.通过合作学习,体验
34、探索数学规律的思想和方法.2.理解加法的运算律.3.掌握多个有理数相加的顺序和方法,探索利用运算律简化运算过程.4.灵活运用有理数的加法解决简单实际问题.教学分析重点:加法运算律和多个有理数相加的顺序与方法.难点:例3的第(2、(3题,项较多,涉及分数运算,如何应用运算律需要较多的思考。例4要求列出两种不同意义的算式,这些都是本节教学的难点。教学过程一、复习1.叙述有理数的加法法则.2.“有理数加法”与小学里学过的数的加法有什么区别和联系?答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运
35、算.3.计算下列各题,并说明是根据哪一条运算法则?(1(-9.18+6.18; (26.18+(-9.18; (3(-2.37+(-4.634.计算下列各题:(18+(-5+(-4; (28+(-5+(-4;(3(-7+(-10+(-11; (4(-7+(-10+(-11;(5(-22+(-27+(+27; (6(-22+(-27+(+27.二、新授通过上面练习,引导学生得出:交换律两个有理数相加,交换加数的位置,和不变.用代数式表示上面一段话:a+b=b+a.运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.结合律三个数相加
36、,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示上面一段话:(a+b+c=a+(b+c.这里a,b,c表示任意三个有理数.根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.例3 计算:(115+(-13+18.(2(-2.48+4.33+(-7.52+(-4.33(356+(17-+(16-+(67-引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便.本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学
37、生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0,同号结合或凑整数.例4小明摇控一辆玩具赛车,让它从A地出发,先向东行驶15m,再向西行驶25m,然后又向东行驶20 m,再向西行驶35m,问玩具赛车最后停在何处?一共行驶多少米?教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便.第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别.三、练习1.课内练习:1、2、32.探究活动四、本节课你有哪些收获?五、作业1.见作业本。课堂教学设计说明2.2有理数的减法(一教学目标:1、经历探索有理数减法的过程,理解有理数减法法则;2、能熟练进行整数减法
38、的运算。3、会用减法解决简单的实际问题。教学重点和难点:重点:有理数的减法法则。难点:例2的问题情境涉及有理数的大小比较等多个方面,并包含比较复杂的符号问题,是本节教学的难点。教具准备:天气预报表一份、温度计挂图一张、扑克27副、-100100之间的整数卡片200张。教学思路:一、有理数加法运算是怎样做的?活动一:四人一组,用扑克牌做有理数加法运算游戏(一人做裁判,另三人每人18张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,先求出三张牌点数之和者获胜,直至其中一人手中无牌为止。二、出示天气预报表 可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题三、探索有
39、理数的减法法则1、把刚才计算各城市的温差的结果用减法算式写出来,比较:差与被减数、减数有什么关系?说明小学学过的加法与减法互为逆运算对有理数是否仍然适用?2、计算下列各组式子:50-20= 50+(-20= 50-10= 50+(-10=50-(-20= 50+20= 50-(-10= 50+10=50-0= 50+0= 0-50= 0+(-50=你能得出什么结论?你能由此得出由减法运算变成加法运算的方法吗?四、有理数减法法则的应用1、练习:口算:3-5= 3-(-5= (-3-5=(-3-(-5= -6-(-6= -6-6=-7-0= 0-(-7= 9-(-11=活动二:整数卡片游戏(教师每
40、次任意抽取两张卡片,自己为减号,让学生做减法运算2、P.31例1(书写格式3、P. 32例2(理解、列式、计算4、课内练习5、活动三:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数,先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止。四、小结五、作业:见作业本。.2.2有理数的减法(二教学目标:1.理解加减统一为加法,并化为省略加号的和式.2.会进行若干个数的加减混合运算.3.体验矛盾着的对立双方,能在一定条件下互相转化的辨证唯物主义思想.4.会用加减混合运算解决简单的实际问题.教学重点和难
41、点:重点:把加、减混合的算式化为省略加号的和式,并运用加法运算律合理地进行运算。难点:把加、减混合运算统一成加减运算,需要一个比较复杂的思维和表述过程,是本节教学难点。 教学过程: 要计算1132(3443-+-,你认为怎样计算简便?请先试一试. 1132(34431132(34431213(33441(10-+-=+-+-+=+-+-=+-= 这里,将式子里的减法都转化为加法,原来的加减混合运算,统一成只有加法的和式,从而可以运用加法运算律简化计算.1132(34431132(34431(10=-+=+-=+-= 省略各个加数的括号和它前面的加号,写成省略加号的和式,目的是简化算式,但加法运
42、算律仍能适用。 “11323443-+”仍可以看做和式,读做“正13、负14、负34与正23的和”;更多地,我们读做“13减14减34加23”. 做一做 P34 第一步:将减法转化成加法;第二步:写成省略加号的和式;第三步:运用加法运算律,使计算简便.例3 把下列写成省略加号的和的形式,并把它读出来:(-3+(-8-(-6+(-7.解(-3+(-8-(-6+(+7=(-3+(-8+(+6+(-7=-3-8+6-7.读做“-3,-8,6,-7的和”,或“负3减8加6减7”.课内练习 P35第1题.例4 一储蓄所在某时段内共受理了8项现款储蓄业务,存入记“+”,取出记“负”,要求记录并计算结果.
43、如学生报数如下:取出63.7元,存入150元,取出200元,存入120元,存入300元,取出112元,取出300元,存入100.2元.解记存入为正,由题意可得-63.7+150-200+120+300-112-300+100.2=(150+120+100.2+(300-300+(-63.7-200-112=37.0+0+(-375.7=-5.5(元.答:该储蓄所在这一时段内现款减少了5.5元.课内练习 P35第2题.小结:本节课你有哪些收获?作业:见作业本。2.3有理数的乘法(一教学目标:1、引导学生积极参与思考,理解并掌握有理数乘法法则2、鼓励学生参与到数学学习活动中,自己动手,总结规律。能
44、够确定有理数相乘积的符号,获得成功的体验。教学重点:培养学生对有理数乘法法则的理解。教学难点:有理数相乘如何确定积的符号。教学工具:投影仪教学过程:一、创设情境引出课题上堂课我们学习了水位的变化,知道可以根据给出的一周的每天的水位变化求出一周内的水位总变化量。现在有甲乙两个水库,甲水库的水位每天升高了三厘米,乙水库的水位每天下降了3厘米,4天后甲乙水库水位的总变化量各是多少?(用“+”号表示水位上升,用“”号表示水位下降师:同学们甲水库的每天水位变化量是多少?(+3厘米乙水库的每天水位变化量是多少?(3厘米那么四天后甲水库的水位变化量是多少?3+3+3+3= 34 = 12 (厘米四天后乙水库
45、的水位变化量是多少?(-3+(-3+(-3+(-3=(-34 = - 12 (厘米(引出课题二、交流讨论探索新知1.议一议:四天后乙水库的水位变化量为(-34= -12 (厘米那么三天后乙水库的水位变化量为(-33 = -9(厘米依次递推(-32= -6(厘米 (-31= -3(厘米(-30= 0 (厘米由上面这些等式,同学们发现什么规律?学:一个因数都为-3时,另一个因数减小1时,积都减小-3,也就是积减去-3,等价于积加上32.猜一猜:现在同学们借助于我们发现的这一规律猜一猜(-3(-1 =(-3(-2=(-3(-3 =(-3 (-4 =3.试一试:同学们由黑板上的这些等式是否能总结出乘法
46、法则。 学:一个负数和一个正数相乘结果为负,然后绝对值相乘 0和负数相乘结果为0,两个负数相乘结果为正,绝对值相乘师:所以有理数乘法法则为: 4.做一做:例1:计算:(1 34113(2(-2.54 (3 (-5 032 (4(13-(-3 (5(-6(54-(-4 解:34和113同号,结果为正,绝对值相乘 34113=3443=-20-2.5和4异号,结果为负,绝对值相乘(-2.54 =-(2.54=10(-5 032=013-和-3同号,结果为正,绝对值相乘 (13- (-3=+( 13-3=1 由、三、随堂练习P38课内练习 让每位学生在做之前先确定积的符号。四、小结:这堂课我们学习的
47、内容比较多,请同学们整理一下思路。总结学的新的知识点。1.有理数乘法法则:2.倒数的定义:五、作业:习题2.10教后反思:本堂课采取了“概念形成”的方式,让学生进行体验性学习,以学生的自主学习为中心,采用了让学生观察、实践、探索、发现的探索式学习方式,引导学生独立思考,学生从课堂表现来看掌握还可以。2.3 有理数的乘法(二教材分析:通过回顾上堂课内容复习有理数的乘法法则,通过一些实例使学生发现小学时学过的乘法的三种运算律仍然成立,会用字母表示。并能够在运算中体会运算律对简化运算的作用。教学目标:1、 通过学生自己动手实际操作,证明有理数运算中乘法的交换律、结合律以及分配律依然成立。2、 培养学
48、生积极参与对数学问题的讨论,敢于发表自己的观点,并用实例来给予证明,对数学有好奇心与求知欲。教学重点:乘法运算律及其运用。教学难点:例2第(4题的简便算法需要一定的观察和分析能力,例3理解问题有一定的难度教学过程:一 提问有理数的乘法法则,互为倒数的定义,几个有理数相乘积的符号的确定。二 新课:1、做一做:计算下列各题,并比较她们的结果。 (-7 8与8(-7结果相等109(35(-与35(109(-结果相等 师:由上面的两组式子,我们发现了什么规律?学:乘法满足交换律。 (-4(-6 5与(-4(-65结果相等 4(37(21-与-4(37(21结果相等 师:由上面的两组式子,我们发现了什么
49、规律?学:乘法满足结合律。 -+-23(3(2(与23(2(3(2(-+-结果相等-+-54(7(5与54(57(5-+-结果相等 师:由上面的两组式子,我们发现了什么规律?学:乘法满足分配律2、想一想:由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立。那么同学们现在再给你们几分钟的时间,你们分别写出满足乘法的交换律、结合律以及分配律的式子。刚才我们都是通过具体的数来表示乘法的交换律、结合律与分配律的,现在请你们用字母表示乘法的交换律、结合律与分配律。乘法的交换律:ab=ba乘法的结合律:(abc=a(bc乘法的分配律:a(b+c=ab+ac3、例2计算:(1
50、(-12(-3756(26(-100.113(3-30(1223-45+ (44.99(-12(1,(2两题的解题过程引导学先处理符号,再运用交换律与结算.(3师:这道题如何计算能相对简便一些,请同学们思考一下。(4师:这道题如何计算能相对简便一些呢?引导学生仔细观察算式中的数字特征,如4.99与5很接近,如果把4.99写成(5-0.01,就可以利用分配律进行简便计算.师:由这四道计算题,同学们能否总结出我们运用乘法交换律、结合律、分配律进行简便运算的原则?学:能约分的、凑整的、互为倒数的数要尽可能的结合在一起。4、例3:某校体育器材室共有60个篮球。一天课外活动,有3个级分别计划借篮球总数的
51、12,13和14。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?分析:篮球总数的12,13和14的含义是什么?在这种背下,体育器材室的篮球总数可以看做什么数?三个班级若按计划借走篮球总数的12,13和14后,剩下的篮球占篮球总数的几分之几?应怎样列式?三、随堂练习:P41课内练习四、小结:在有理数运算中乘法满足交换律结合律、以及分配律,使用它们的原则是能约分的、凑整的、互为倒数的数要尽可能的结合在一起。五、作业:见作业本教后反思:本课主旨意在巩固有理数乘法法则,并会进行相应的简便运算,这类知识小学时就已经做过很多的练习,学生掌握很好。2.4有理数的除法教学内容:(
52、浙教版七年级上册第4346页例1例2及相关练习教学目标:1.经历根据除法是乘法的逆运算,归纳出有理数的除法法则的过程2.掌握有理数除法法则,理解零不能做除数。3.理解除法转化为乘法,体验矛盾着的对立双方在一定的条件下互相转化的辨证唯物主义思想4.会运用除法法则求两个有理数的商,会进行简单的混合运算教学重点:除法法则和除法运算教学难点:根据除法是乘法的逆运算,归纳出除法法则教学过程:(一温故提新:1.小学里学过有关倒数的概念是什么?怎么求一个数的倒数?(用1除以这个数 4和+2/3的倒数是多少?0有倒数吗?为什么没有?2.小学里学过的除法与乘法有何关系?例如100.5=102;05=0(1/5,你能总结总结出一句话吗?(除以一个数等于乘以这个数的倒数3.50=?,00=?呢?(这些式子无意义也就是说0是没有倒数的。4.我们已知的求倒数的法则在有理数范围中同样适用吗?你能说说以下各数的倒数是多少吗?4,2.5,-9,-37,-1,a, a-1, 3a, abc, -xy(各字母式不为0说明:一个数的倒数与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计平台外包合同协议
- 超大阳台卖房合同协议
- 财务监管协议书范本
- 购买亚克力板合同协议
- 订单种植红萝卜合同协议
- 购买生猪养殖合同协议
- 订货赔偿合同协议模板
- 资质服务合同协议书范本
- 2025年跨文化交际能力测试卷及答案
- 2025年经济学原理课程考试试卷及答案详解
- 福建省平和广兆中学2024−2025学年高一下学期3月月考数学试卷(含解析)
- 2025春季建投国电准格尔旗能源有限公司招聘31人(内蒙古)笔试参考题库附带答案详解
- 租房养狗合同补充协议
- 辽宁省沈阳市2023−2024学年高一下学期期中考试数学试卷(含解析)
- 2025年北京市各区高三语文一模记叙文范文汇编
- 《农村基层干部廉洁履行职责规定》解读与培训
- 华图面试协议班合同
- 初中八年级英语课件the Leaning Tower of Pisa
- 电影音乐欣赏智慧树知到课后章节答案2023年下华南农业大学
- 膳管会会议记录
- YY/T 1474-2016医疗器械可用性工程对医疗器械的应用
评论
0/150
提交评论