




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、圆是轴对称图形吗?它的对称轴是?垂径定理的、圆是轴对称图形吗?它的对称轴是?垂径定理的内容是?我们是怎样证明垂径定理的内容是?我们是怎样证明垂径定理的? 圆是圆是轴对称图形轴对称图形,对称轴是,对称轴是直径所在的直线直径所在的直线。垂。垂径定理是根据径定理是根据圆的轴对称性圆的轴对称性进行证明的。进行证明的。2、绕圆心转动一个圆,它会发生什么变化吗?圆、绕圆心转动一个圆,它会发生什么变化吗?圆是中心对称图形吗?它的对称中心在哪里?是中心对称图形吗?它的对称中心在哪里? 它是不会发生变化的,我们称之为它是不会发生变化的,我们称之为“圆具有圆具有旋旋转不变性转不变性”。圆是。圆是中心对称图形中
2、心对称图形,它的对称中心是,它的对称中心是圆心圆心。 今天这节课我们将运用圆的今天这节课我们将运用圆的旋转不变性旋转不变性去探究去探究弧、弦、圆心角的关系定理。弧、弦、圆心角的关系定理。 圆心角圆心角:我们把:我们把的角叫做的角叫做圆心角圆心角.OBA一、概念一、概念DABO找出右上图找出右上图中的圆心角。中的圆心角。圆心角有:圆心角有:AOD,BOD,AOB圆心角.gsp根据旋转的性质,将圆心角根据旋转的性质,将圆心角AOB绕圆心绕圆心O旋转到旋转到AOB的位的位置时,置时, 显然显然AOBAOB,射线,射线 OA与与OA重合,重合,OB与与OB重合而同圆的半径相等,重合而同圆的半径相等,O
3、A=OA,OB=OB,从而点,从而点 A与与 A重合,重合,B与与B重合重合OABOABABAB,ABA B.ABA B 如图,将圆心角如图,将圆心角AOB绕圆心绕圆心O旋转到旋转到AOB的位置,的位置,你能发现哪些等量关系?为什么?你能发现哪些等量关系?为什么?重合,重合,AB与与AB重合重合ABA B与二、探究二、探究 在等圆在等圆中,是否也中,是否也能得到类似能得到类似的结论呢?的结论呢?在同圆或等圆中在同圆或等圆中,相等的弧所对的圆心角,相等的弧所对的圆心角_, 所对的弦所对的弦_;在同圆或等圆中在同圆或等圆中,相等的弦所对的圆心角,相等的弦所对的圆心角_,所对的弧,所对的弧_弧、弦与
4、圆心角的关系定理弧、弦与圆心角的关系定理在同圆或等圆中,在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,所对的弦也相等所对的弦也相等相等相等相等相等相等相等相等相等同圆或等圆中,同圆或等圆中,两个圆心角、两两个圆心角、两条弧、两条弦中条弧、两条弦中有一组量相等,有一组量相等,它们所对应的其它们所对应的其余各组量也相余各组量也相等(等(P83)三、定理三、定理 在在同圆同圆或或等圆等圆中,中,相等的圆心角相等的圆心角所对的所对的弧弧相等,所对的相等,所对的弦弦相等,所对的弦的相等,所对的弦的弦心距弦心距相等相等OA BCABCAOB=AOBAB=AB AB=AB OC=OC弧
5、、弦、圆心角的关系定理弧、弦、圆心角的关系定理三、定理三、定理AOB=AOBAB=AB AB=AB OC=OC两个圆心角相等两个圆心角相等两条弧相等两条弧相等两条弦相等两条弦相等两条弦心距相等两条弦心距相等 这四组关系这四组关系分别轮换,其它分别轮换,其它关系是否成立关系是否成立?OA BCABCAOB=AOBAB=AB AB=AB OC=OC弧、弦、圆心角关系定理的推论弧、弦、圆心角关系定理的推论 在在同圆同圆或或等圆等圆中,中,相等的弧相等的弧所对的所对的圆心角圆心角相等,所对的相等,所对的弦弦相等,所对的相等,所对的弦的弦的弦心距弦心距相等相等OA BCABC弧、弦、圆心角关系定理的推论
6、弧、弦、圆心角关系定理的推论AOB=AOBAB=AB AB=AB OC=OC 在在同圆同圆或或等圆等圆中,中,相等的弦相等的弦所对的所对的圆心角圆心角相等,所对的相等,所对的弧弧相等,所对的相等,所对的弦的弦的弦心距弦心距相等相等OA BCABCAOB=AOBAB=AB AB=AB OC=OC弧、弦、圆心角关系定理的推论弧、弦、圆心角关系定理的推论 在在同圆同圆或或等圆等圆中,中,相等的弦心距相等的弦心距所对的所对的圆心角圆心角相等,所对的相等,所对的弧弧相等,所对的相等,所对的弦弦相等相等OA BCABC同圆或等圆中,同圆或等圆中,两个圆心角、两两个圆心角、两条弧、两条弦、条弧、两条弦、两条
7、弦的弦心距两条弦的弦心距中有一组量相等,中有一组量相等,它们所对应的其它们所对应的其余各组量也相余各组量也相等(等(P83)三、定理三、定理OBABAOBOABOBABO1、 ,oAOBAOBABA B ABAB 在中,。2、 ,oABA BAOBAOB ABAB 在中,。3、, oAB ABAOBAOB AB A B 在中,。 请利用右图用数学语言叙述请利用右图用数学语言叙述一下我们刚学的三条定理。一下我们刚学的三条定理。(见教材(见教材P83练习练习 1 ) 如图,如图,AB、CD是是 O的两条弦的两条弦(1)如果)如果AB=CD,那么,那么_,_(2)如果)如果 ,那么,那么_,_(3)
8、如果)如果AOB=COD,那么,那么_,_(4)如果)如果AB=CD,OEAB于于E,OFCD于于F,OE与与OF相等吗?相等吗?为什么?为什么?CABDEFOABCDAOBCOD AB=CDABCDAOBCOD,11,22ABCDAECFOAOCR.OEOFOEAB OFCDAEAB CFCDt AOERt COFOEOF 解:理由如下: 又又AB=CD四、练习四、练习ABCD证明:证明: AB=ACABC是等腰三角形是等腰三角形又又ACB=60, ABC是等边三角形是等边三角形 , AB=BC=CA. AOBBOCAOC.ABCOAC=AB例例1 如图,在如图,在 O中,中, AB=AC
9、,ACB=60,求证:求证:AOB=BOC=AOC60 五、例题五、例题(见教材(见教材P83练习练习 2 )如图,)如图,AB是是 O 的直径,的直径, COD=35,求,求AOE 的度数的度数AOBCDE BCCDDE BOC= COD= DOE=35 1803 35AOE 75解:解:,BC CDDE六、练习六、练习七、思考七、思考OADBC如图,已知如图,已知AB、CD为为的两条弦,的两条弦,.求证求证:ABCD. D C A B OADBCADBD BCBDABCD证明:, =, 即, AB=CD图4 4、如图、如图7 7所示,所示,CDCD为为OO的弦,在的弦,在CDCD上取上取C
10、E=DFCE=DF,连结,连结OEOE、OFOF,并延长交,并延长交OO于点于点A A、B.B.(1 1)试判断)试判断OEFOEF的形状,并说明理由;的形状,并说明理由;(2 2)求证:)求证:AC=BDAC=BD EFOABCD创新探究创新探究 1. 1.如图,在如图,在OO中,弦中,弦AB=CDAB=CD,ABAB的延长线与的延长线与CDCD的延长的延长线相交于点线相交于点P P,直线,直线OPOP交交OO于点于点E E、F.F.你以为你以为APEAPE与与CPECPE有什么大小关系?为什么?有什么大小关系?为什么? A AE EC CN NM MB BD DP PO O图5 5、如图,等边、如图,等边ABCABC的三个顶点的三个顶点A A、B B、C C都在都在OO上,连接上,连接OAOA、OBOB、OCOC,延长,延长AOAO分别交分别交BCBC于点于点P P,交,交BCBC于点于点D D,连,连接接BDBD、CD.CD.(1 1)判断四边形)判断四边形BDCOBDCO的形状,并说明理由;的形状,并说明理由;(2 2)若)若OO的半径为的半径为r r,求,求ABCABC的边长的边长BCAOPD讲例讲例例例1:如图,:如图,O中两条相等的弦中两条相等的弦AB、CD分别延长到分别延长到E、F,使,使BE= DF。求证:求证:EF的垂直平分线必经过点的垂直平分线必
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论