江苏省二轮复习资料(10个专题)专题三doc_第1页
江苏省二轮复习资料(10个专题)专题三doc_第2页
江苏省二轮复习资料(10个专题)专题三doc_第3页
江苏省二轮复习资料(10个专题)专题三doc_第4页
免费预览已结束,剩余29页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题三抛体运动要点分析1、命题趋势:课程标准要求会用运动的合成与分解的方法分析抛体运动。抛体运动是高中阶段学习的重要的运动形式,是历年高考重点考查的内容之一。平抛运动的规律及物体做曲线运动的条件是考查的重点和难点。从历年的高考情况来看,单纯考查这部分知识的题目不是很多,较多的是结合万有引力、电场磁场、机械能守恒等问题来考查。2、题型归纳:复习时要在扎实掌握本部分内容的基础上注重与其他部分的渗透以及与实际生活相结合,与电场和磁场相联系的综合问题 (如电场中带电粒子的类平抛运动) 更要引起重视。 本部分还可以与匀变速直线运动、牛顿定律相结合构成多过程分析题,甚至涉及到公路、铁路、航海、航空等交通方

2、面的知识。3、方法总结:利用运动的合成与分解研究曲线运动的思维流程(欲知)曲线运动规律(只需)研究两直线运动规律(得知)曲线运动规律在处理实际问题中应注意只有深刻挖掘曲线运动的实际效果,才能明确曲线运动应分解为哪两个方向上的直线运动,这是处理曲线运动的出发点进行等效合成时,需要寻找两分运动的时间联系等时性,这是处理曲线运动问题的切入点例题精析例 1、关于互成角度的两个初速度不为零的匀变速直线运动的合运动,下列说法正确的是()A 合运动的轨迹一定是抛物线B合运动的性质一定是匀变速运动C合运动的轨迹可能是直线,也可能是曲线D 合运动的性质无法确定例 2、如图所示,一足够长的固定光滑斜面与水平面的夹

3、角为以初速度v1 从斜面顶端水平抛出, 物体 B 在斜面上距顶端度 v2 沿斜面向下匀加速运动,经历时间t 物体 A 和物体53,物体AL=20m 处同时以速B 在斜面上相遇,则下列各组速度和时间中满足条件的是(cos53 =0.6,sin53 =0.8,g= 10 m/s2)A v1=15m/s,v2 =4 m/s,t= 4sB v1=15 m/s, v2=6 m/s ,t= 3sC v1=18 m/s, v2=4 m/s ,t= 4sD v1=18m/s, v2=6 m/s,t= 3s例 3、如图所示,水平屋顶高H=5m ,墙高 h=3.2m,墙到房子的距离L=3 m,墙外马路宽房顶水平飞

4、出落在墙外的马路上,求小球离开屋顶时的速度。( 取 g=10m/s2)s=10m,小球从例 4、如图甲所示, 水平传送带的长度L =5m,皮带轮的半径R=0.1m,皮带轮以角速度顺时针匀速转动。现有一小物体(视为质点)以水平速度v0 从 A 点滑上传送带,越过B 点后做平抛运动,其水平位移为s。保持物体的初速度v0 不变,多次改变皮带轮的角速度,依次测量水平位移s,得到如图乙所示的s图像。回答下列问题:( 1)当 010 rad/s 时,物体在 A、 B 之间做什么运动?( 2)B 端距地面的高度 h 为多大?( 3)物块的初速度 v0 多大?s/m31130/rad/图甲图乙针对训练:()1

5、、关于平抛运动,下列说法正确的是:A、平抛运动是匀变速运动B、平抛运动的物体在任何相等时间内速度变化量相等C、平抛运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合成D、落地时间与落地速度只与抛出点高度有关( )2、物体做平抛运动时,它的速度的方向和水平方向间的夹角 的正切 tg 随时间 t 变化的图像是图中的()3、如图所示,为一物体平抛运动的x-y 图象,物体从 O点抛出, x、y 分别为其水平和竖直位移. 在物体运动过程中的任一点(、),其速度的反向延P xy长线交于x轴的A点(A点未画出),则的长为OAA. xB.0.5xC.0.3xD. 不能确定()4、如图所示,倾角为的斜面上

6、 A 点,以水平速度v0 抛出一个小球,不计空气阻力,它落到斜面上B 点所用的时间为A.2v0 sinB.2v0 tanC.v0 sinD.v0 tangggg()5、甲从高H 处以速度v 1 水平抛出小球A ,乙同时从地面以初速度v2 竖直上抛小球B ,在B 尚未到达最高点之前,两球在空中相遇,则( A) 两球相遇时间 tHHv1v1( B) 抛出前两球的水平距离 sv 2( C) 相遇时 A 球速率 vgH( D) 若 v 2gH , 则两球相遇在H 处v 22() 6一航天探测器完成对火星的探测任务后,在离开火星的过程中,由静止开始沿着与火星表面成一倾斜角的直线飞行,先加速运动,再匀速运

7、动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是A 探测器加速运动时,沿直线向后喷气B探测器加速运动时,竖直向下喷气C探测器匀速运动时,竖直向下喷气D 探测器匀速运动时,不需要喷气()7如下图所示的塔吊臂上有一可沿水平方向运动的小车A,小车下通过钢丝绳装有吊着物体B 的吊钩在小车 A 与物体 B 以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B 向上吊起,A 、B之间的距离以dH2t 2(SI)( SI表示国际单位制,式中H 为吊臂离地面的高度)规律变化,则物体做A 速度大小不变的曲线运动B速度大小增加的曲线运动C加速度大小和方向均不变的曲线运动D 加速度大小和方向均变化

8、的曲线运动( )8如图所示 , 光滑平台上有一个质量为 m 的物块,用绳子跨过定滑轮由地面上的人向右拉动,人以速度 v 从平台的边缘处向右匀速前进了 s,不计绳和滑轮的质量及滑轮轴的摩擦,且平台离人手作用点竖直高度始终为 h ,则A 在该过程中,物块的运动也是匀速的mv2B 在该过程中,人对物块做的功为2mv2 s2C在该过程中,人对物块做的功为s2 )2(h2vhD在该过程中,物块的运动速率为s2h29、如图所示,在研究平抛物体的运动的实验中,用一张印有小方格的纸记录轨迹,每个小方格的边长L=1.25cm.若小球在平抛运动途中的几个位置为图中的a、 b、c、 d 几点,则小球平抛的初速度的计

9、算式为v 0=(用 L和 g 表示 ),其值是,小球在 b 点的速率是.(取 g=9.8 m/s2)10、A、B 两点在地面 O点的正上方, A 点离地高度为 20m,B 点离地高度为10m,现在分别在 A、B 两点水平抛出两个小球,要使两球同时落地,试分析说明:(1)那一个小球应先抛出。 (2)物体抛出的初速度对落地的时间是否有影响。(3)两球抛出的时间间隔是多少。11、如图所示, AB为斜面,倾角为30,小球从A点以初速度v0 水平抛出,恰好落到B 点,求:(1)AB间的距离;( 2)物体在空中飞行的时间;(3)从抛出开始经多少时间小球的速度与斜面平行此时与斜面间的距离为多?12如图所示,

10、一小球自平台上水平抛出,恰好落在临近平台的一倾角为 = 53的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差 h= 0.8m,重力加速度 g= 10m/s2 ,sin53 = 0.8,cos53= 0.6,求小球水平抛出的初速度 v0 是多少?0斜面顶端与平台边缘的水平距离s 是多少?h若斜面顶端高 H = 20.8m,则小球离开平台后经多长时间t 到达斜面底端?s5313在冬天,高为 h=1.25m 的平台上,覆盖了一层冰,一乘雪橇的滑雪爱好者,从距平台边缘s=24m处以一定的初速度向平台边缘滑去,如图所示, 当他s滑离平台即将着地时的瞬间, 其速度方向与水平地面v的夹角为

11、=45,取重力加速度 g=10m/s2。求:( 1)滑雪者着地点到平台边缘的水平距离是多h大;( 2)若平台上的冰面与雪橇间的动摩擦因数为=0.05,则滑雪者的初速度是多大?14如图所示,将质量为 m 的小球从倾角为 的光滑斜面上的 A 点以初速0 水平抛出(即0 CD ),小球沿斜面运动到B 点.已知 A 点的竖直高度为h,则小球到达 B 点时的速度大小为多少?小球在斜面上的运动时间为多少?Cv0DAhB参考答案:【例1】解析:合力是恒定的,合运动的性质一定是匀变速运动;当合速度与合力在一条直线上时,合运动是直线运动,当合速度与合力不在一条直线上时,合运动是曲线运动。所以,BC 正确。答案:

12、 BC题后反思: 本题考查物体作曲线运动的条件。物体该做怎样的运动是由它的受力和初始条件决定的。【例 2】解析: 由平抛运动知识得 tan53gt 2t 和速度 v1 代入,得 4v1 15t,把各选项中的时间2v1 t上式,只有 A 项能使关系式有解。故正确答案为A。答案 :A。题后反思: 本题考查 考点“ 平抛运动 ”,涉及到运动的合成与分解、匀变速直线运动等知识。本题重在考查考生对“物体A 和物体 B 在斜面上相遇”这一条件的理解应用能力。本题不仅考查对平抛运动规律的应用,同时考查考生应用多种方法解决问题的能力。如果不采用代入法而自接推导会复杂得多。平抛运动还可结合牛顿运动定律、天体运行

13、、电场等知识进行综合命题。【例 3】【解析】设球刚好越过墙时,此时球水平初速度为v1,则 H-h=gt 12/2. t1=2( Hh) / gL=v 1t1得 v1 =5m/s设球越过墙刚好落在马路右边,此时球水平速度为v 2,则 H=gt22/2. t2=2H / gL+s=v 2t 2 得 v2=13m/s小球离开屋顶时的速度 5m/sv13m/s【例 4】解:( 1)物体的水平位移相同,说明物体离开B 点的速度相同,物体的速度大于皮带的速度,一直做匀减速运动。( 2)当 =10rad/s 时,物体经过 B 点的速度为 vBR1m/s 平抛运动: h1gt 22svB t解得: t=1s,

14、 h=5m( 3)当 30rad/s 时,水平位移不变,说明物体在AB 之间一直加速,其末速度s3vBm/st根据 vt2v022as当 010rad/s时, 2gL v02vB2当 30rad/s时, 2 gLvB2v02 2 gL v,B2v02解得: v05m / s题后反思: 本题以传送带上物体的运动为背景,涉及到直线运动、牛顿定律、圆周运动、平抛运动等较多知识点,过程多,情景复杂,对考生综合应用能力要求较高。针对训练答案:1 ABC2.B3.B4.B5. BD6.C7.BC8.C9.【解析】根据运动学知识可知:v0=2L/t s=gT2其中 s=3L-2L=L ,所以 TSL ,gg

15、代入式得 v 02gL0 . 70 m / sb 点的竖直分速度 v y3 l3gl (利用中间时刻的瞬时速度等于整段时间的平均速度规律2T2b 点的速率 v bv 02v 2y5gL0 .875 m /s210 (1)A 球(2)没有影响( 3)2 222(3)211 (1)4v 0 /3g (2)23 v 0 /3g 3 v 0 /12g12解:(1)由题意可知:小球落到斜面上并沿斜面下滑,说明此时小球速度方向与斜面平行,否则小球会弹起,所以vy = v0tan53 vy2 = 2gh代入数据,得vy = 4m/s, v0 = 3m/s( 2)由 vy = gt1 得 t1 = 0.4s

16、s =v 0 t1 = 3 0.4m = 1.2m( 3)小球沿斜面做匀加速直线运动的加速度a=mgsin53 2m= 8m/s22= 5m/s0初速度 = 0+ yH=vt 2 + 1at22hsin53 2代入数据,整理得4t22 + 5t 2 - 26 = 0ys解得t2 = 2s 或 t 2=13s(不合题意舍去)4所以 t = t1 + t 2 = 2.4s13解析: (1)把滑雪爱好者着地时的速度vt 分解为如图所示的v0、vy 两个分量由 h1gt 22)053解得 t=0.5s则vy=gt= 5m/s又 vy=v0tan45 解得 v0=5m/s着地点到平台边缘的水平距离:x=

17、 v0t=2.5m( 2)滑雪者在平台上滑动时,受到滑动摩擦力作用而减速运动,由动能定理得mgs1 mv021 mv222解得: v=7m/s即滑雪者的初速度为 7m/s。14(1)由机械能守恒定律:1mv02mgh1mv2 得22v22 gh0( 2)小球做类平抛运动 由牛顿第二定律: mgsin =max vth1 at 2sin2解以上各式得t2 h2g si n圆周运动命题趋势: 匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高中物理中占据极其重要的地位。l 在提倡素质教育的今天,高考也会把考查学生的能力放在首位,圆周运动的角速度、线速度和向心加速度是近几年高考的热点。2 与实际应

18、用和与生产、生活、科技联系命题已经成为一种命题的趋向,特别是神舟系列飞船发射成功、嫦娥探月计划的实施,更会结合万有引力进行命题。题型归纳:本节内容包括圆周运动的动力学部分和物体做圆周运动的能量问题, 其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。方法总结:本节所涉及到的基本方法与牛顿运动定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。根据牛顿第二定律合外力与

19、加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。易错点分析:在本节知识应用的过程中,常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问

20、题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。典型例题:1. 皮带传动问题例 1:如图所示,为一皮带传动装置,右轮的半径为r , ac2r rb是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮4r的半径为 2r , b 点在小轮上,到小轮中心的距离为r , c 点和dd 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A. a点与 b 点的线速度大小相等B. a点与 b 点的角速度大小相等C. a点与 c 点的线速度大小相等D. a点与 d 点的向心加速度大小相等2.水平面内的圆周运动例 2:如图所示,水平转盘上放有质量为m的物体,当物块到转轴的距离为 r

21、时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间的最大静摩擦力是其正压力的 倍。求:rOar( 1)当转盘的角速度 1=g 时,细绳的拉力。2r( 2)当转盘的角速度 2=3 g 时,细绳的拉力。2r3. 竖直面内的圆周运动例 3、一内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的半径大得多)在圆管中有两个直径略小于细管内径相同的小球(可视为质点) A 球的质量为 m1,B 球的质量为 m2它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设 A 球运动到最低点时, B 球恰好运动到最高点,重力加速度用g 表示B( 1)若此时 B 球恰好对轨道无压力,题中相关物理

22、量满足何种关系?( 2)若此时两球作用于圆管的合力为零,题中各物理量满足何种关系?( 3)若 m1=m2=m ,试证明此时A 、B 两小球作用于圆管的合力大小为6mg,方向竖直向下A4.极值问题例 4:如图所示,用细绳一端系着的质量为M = 0.6Kg的物体 A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O吊着质量为m = 0.3Kg 的小球 B, A 的重心到O点的距离为 0.2 m 。若 A 与转盘间的最大静摩擦力为 Ff =2N,为使小球 B 保持静止,求转盘绕中心O旋转的角速度 的取值范围。(取 g=10m/s2)OAB5.数理问题例 5:如图,光滑的水平桌面上钉有两枚铁钉A、

23、 B,相距 l 0=0.1m,长 l =1m的柔软细线一端拴在A上,另一端拴住一个质量为500g 的小球,小球的初始位置在AB连线上 A 的一侧,把细线拉直,给小球以2m/s 的垂直细线方向的水平速度,使它做圆周运动,由于钉子B 的存在,使细线逐步缠在A、B 上,若细线能承受的最大拉力Fm=7N,则从开始运动到细线断裂的时间为多少?AB针对训练:( ) 1、 火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。若在某转弯处规定行驶速度为 v ,则下列说法中正确的是A 当以 v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B 当以 v 的速度通过此弯路时,火车重力、轨道

24、面支持力和外轨对轮缘弹力的合力提供向心力C 当速度大于v 时,轮缘挤压外轨D 当速度小于v 时,轮缘挤压外轨() 2、如图,长为L 的轻杆,一端固定一个小球,使小球动,关于小球在最高点时的速度v,下列说法正确的是P 在竖直平面内做圆周运A v 的最小值为RgB v有零逐渐增大,向心力也逐渐增大C v 由Rg 逐渐增大,杆对小球的弹力也逐渐增大D v 由 Rg 逐渐减少,杆对小球的弹力也逐渐减少() 3、如图所示,水平转盘上的A 、B 、 C 三处有三块可视为质点的由同一种材料做成的正立方体物块;B、C 处物块的质量相等且为m,A 处物块的质量为 2m;点 A、 B 与轴O 的距离相等且为r ,

25、点 C 到轴 O 的距离为2r ,转盘以某一角速度匀速转动时,A、B、C处的物块都没有发生滑动现象,下列说法中正确的是A C 处物块的向心加速度最大B A 处物块受到的静摩擦力最小C当转速增大时,最先滑动起来的是C 处的物块D当转速继续增大时,最后滑动起来的是A 处的物块() 4、如图所示,两个用相同材料制成的靠摩擦转动的轮A和 B水平放置,两轮半径R=2RB当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上 若将小木块放在B 轮上,欲使木块相对 B 轮也静止,则木块距B 轮转轴的最大距离为A RB/4B RB/3c RB/2D RB() 5、如图所示,两个 3/4

26、圆弧轨道固定在水平地面上,半径R相同, A 轨道由金属凹槽制成, B轨道由金属圆管制成,均可视为光滑轨道在两轨道右侧的正上方分别将金属小球 A 和 B 由静止释放,小球距离地面的高度分别用hA 和 hB表示,对于下述说法,正确的是A 若 hA=hB2R,则两小球都能沿轨道运动到最高点B 若 hA=hB=3R 2,由于机械能守恒,两小球在轨道上上升的最大高度均为 3R2C适当调整 hA 和 hB,均可使两小球从轨道最高点飞出后,恰好落在轨道右端口处D若使小球沿轨道运动并且从最高点飞出,A小球在hA5 2,B 小球在B2R的任何Rh高度均可6、小球在半径为 R 的光滑半球内做水平面内的匀速圆周运动

27、,试分析图中的 (小球与半球球心连线跟竖直方向的夹角)与线速度v、周期 T 的关系。(小球的半径远小于 R)。7、如图所示,杆长为 l ,球的质量为 m,杆连球在竖直平面内绕轴 O自由转动,已知在最高点处,杆对球的弹力大小为 F=1 mg,求这时小球的瞬时速度大小。28、如图所示,一根轻质细杆的两端分别固定着A、B 两个质量均为m的小球, O点是一光滑水平轴,已知AO=l , BO=2l ,使细杆从水平位置由静止开始转动,当B 球转到 O点正下方时,它对细杆的拉力大小是多少?9、如图所示,露天娱乐场空中列车是由许多完全相同的车厢组成,列车先沿光滑水平轨道行驶,然后滑上一固定的半径为R 的空中圆

28、形光滑轨道,若列车全长为l ( l2 R),R远大于一节车厢的长度和高度,那么列车在运行到圆环前的速度至少要多大, 才能使整个列车安全通过固定的圆环轨R道(车厢间的距离不计)?v0O10、如右图所示,竖直圆简内壁光滑,半径为R顶部有入口A,在 A 的正下方 h 处有出口B,一质量为 m的小球从入口 A 沿圆筒壁切线方向水平射人圆筒内,要使球从 B 处飞出。小球进入入口 A 处的速度 v0 应满足什么条件 ?在运动过程,球对筒的压力多大 ?参考答案:例 1、解析: 皮带不打滑,右轮和大轮通过皮带传动,故a、 c 两点线速度相等,va vc ,故选项( C)正确;又小轮和大轮在同一转动物体上,c

29、点、 b 点在同一轮轴上角速度相等bcd,半径不同,由 vr , ab ,所以 vc2vb。因此 va2vb,即选项( )r =2 rA错;又v ,故a 2 c ,所以a2b ,即选项( B)错;由 av 2,故 aa2ac 。由rra2 r ,故 ad2ac ,因此 aaa d 故选项( D)正确。本题正确答案C、D。点评: 处理皮带传动问题的要点为, 要抓住不等量和相等量的关系:皮带(链条)上各点以及两轮边缘上各点的线速度大小相等, 而角速度 v/r 与半径 r 成反比。 同一轮轴上各点的角速度 和 n 相同,而线速度 v r 与半径 r 成正比。例 2:解析: 设转动过程中物体与盘间恰好

30、达到最大静摩擦力时转动的角速度为0 ,则2gmg m0r0 r,解得1g02r( 1)因为,所以物体所需向心力小于物与盘间的最大摩擦力,则物与盘产生的摩擦力还未达到最大静摩擦力,细绳的拉力仍为0,即 FT10 。23 g02r( 2)因为,所以物体所需向心力大于物与盘间的最大静摩擦力,则FT 2 ,由牛顿第二定律得FT 2mgm 22r ,解得 FT 2mg细绳将对物体施加拉力2 。点评:转盘: 物体在转盘上随转盘一起做匀速圆周运动,物体与转盘间分无绳和有绳两种情况。无绳时由静摩擦力提供向心力;有绳要考虑临界条件。当转盘转动角速度0 时,物体有绳相连和无绳连接是一样的,此时物体做圆周运动求出

31、0g的向心力是由物体与圆台间的静摩擦力提供的,r。可见,0 是物体相对圆台运动的临界值,这个最大角速度0 与物体的质量无关,仅取决于和 r 。这一结论同样适用于汽车在平路上转弯。例 3、设 B 球经过最高点时速度为v( 1)B 球的重力提供向心力 m2g=m2v 2根据机械能守恒1 m2v021 m2v 2m2 g2RR22得 v02 4gR( 2)因为 A 球对管的压力向下,所以B 球对管的压力向上设 A 球受管的支持力为FA, A 球受管的压力为FB ,根据牛顿第三定律,依题意FA=FB根据牛顿第二定律FAm1 g m1v02BFN2RvFN2FB m2 gm2v 2m2gRFN1又 1

32、m v21 mv 2m g2Rv0A20222FN12m2 ) v02m1g联立各式得 (m1( m15m2 )g 0R( 3) A 球受管的支持力为F A,方向竖直向上;设B 球受管的弹力为F B,取竖直向上为 FB的正方向,根据牛顿第二定律FAmgm v02mgFBm v2RR又 1 mv021 mv2mg2R22两球受圆管的合力F合=FA +BB,方向竖直向上联立以上各式得F 合 =6mg,方向竖直向上根据牛顿第三定律,A 、 B 两小球对轨道作用力的合力大小为6mg,方向竖直向下点评: 比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析找出其中的联系就会变为简单问题,

33、就能很好地解决问题。圆周运动与能量问题常联系在一起,在解这类问题时,除要对物体受力分析,运用圆周运动知识外,还要正确运用能量关系(动能定理、机械能守恒定律) 。例 4:解析: 要使 B 静止, A 必须相对于转盘静止具有与转盘相同的角速度。A 需要的向心力由绳拉力和静摩擦力合成。角速度取最大值时, A 有离心趋势, 静摩擦力指向圆心O;角速度取最小值时,A 有向心运动的趋势,静摩擦力背离圆心O。对于 B: FTmg对于 A: FTF f Mr2FTF f Mr1 ,联立解得16.5rad / s ,22.9rad / s22所以 2.9rad / s6.5rad / s点评: 在水平面上做圆周

34、运动的物体,当角速度 变化时,物体有远离或向着圆心运动的(半径有变化)趋势。这时要根据物体的受力情况,判断物体受的某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等) 。例 5:解析: 小球转动时,由于细线逐步绕在 A、 B 两钉上,小球的转动半径逐渐变小,但小球转动的线速度大小不变。小球交替地绕A、B 做匀速圆周运动, 线速度不变, 随着转动半径的减小,线中拉力 FT不断增大,每转半圈的时间t不断减小。FT1mv2t1llv在第一个半圆内,FT 2mv2t2(ll 0 )ll 0v在第二个半圆内,FT 3mv2t 3(l2l 0 )在第三个半圆内l2lv0 ,F

35、Tnmv2tn l ( n 1)l 0 l(n1)l 0v在第 n 个半圆内,令 FTnFTm7 N ,得 n8.1,即在第8 个半圆内线还未断,n 取 8,经历的时间为tt1t2tnvnl1 23( n1)l 0nln( n1) l 0 8.2sv2针对训练:1、 AC2、 BC3、 AC4、C5、 DTR cos6、由此可得 vgR tansin2g,可见,越大(即轨迹所在平面越高), v 越大, T 越小。17、小球所需向心力向下,本题中本题中F2 mgmg ,所以弹力的方向可能向上也可能向下。mgmv 2glFv( 1)若 F 向上,则l ,2;mgmv23glFv( 2)若 F 向下

36、,则l ,28、 FT1.8mg ,方向竖直向下。v04 gR2gR9、l10、 v0=n R 2g (1, 2),FN=2mn2 2Rg/hh曲线运动综合应用要点分析:纵观近几年高考题,本专题为每年高考的必考内容,对本专题知识考查有以下特点:1. 平抛运动的规律及其研究方法,圆周运动的角速度、线速度和向心加速度是近几年高考的热点2与实际应用和与生产、生活、科技联系命题已经成为一种命题的趋向,特别是神舟系列飞船发射成功、探月计划的实施,更会结合万有引力进行命题3在今后的高考中由于题目数量的限制,本专题单独命题的可能性不大,但与其他知识结合的综合题出现的可能性大大增加.4. 综合近五年的高考题,

37、出题的形式主要是选择和计算题,而计算题由于考查的知识点可能更多一些,因而要格外引起重视典型例题:例一如图为一空间探测器的示意图, P1、 P2、P3 、P4 四个喷气发动机, P1、P3 的连钱与空间一固定坐标系的 x 轴平行, P2、 P4 的连线与 y 轴平行,每台发动机开动时,都能向探测器提供推力,但不会使探测器转动开始时,探测器以恒定的速率 v0 向正 x 方向平动要使探测器改为向正x 偏负 y60o的方向以原来的速率 v0 平动,则可A 先开动 P1 适当时间,再开动P4 适当时间B 先开动 P3 适当时间,再开动P2 适当时间C开动 P4 适当时间D 先开动 P3 适当时间,再开动

38、P4 适当时间例二如图所示,在圆柱形房屋天花板中心O 点悬挂一根长为 L 的细绳,绳的下端挂一个质量为 m 的小球, 已知绳能承受的最大拉力为2mg,小球在水平面内做圆周运动,当速度逐渐增大到绳断裂后,小球恰好以速度v2= 7gI 落到墙脚边求( 1)绳断裂瞬间的速度v1;( 2)圆柱形房屋的高度 H 和半径例三在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0 ,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力已知火星的个卫星的圆轨道的半径为r,周期为 T 火星可

39、视为半径为r0 的均匀球体例四将一测力传感器连接到计算机上就可以测量快速变化的力。图甲表示小滑块 ( 可视为质点 ) 沿固定的光滑半球形容器内壁在竖直平面内 A、A 点之间来回滑动。 A、A 点 0随时间 t 变化的曲线,且图中t 0 为滑块从A 点开始运动的时刻。试根据力学规律和题中( 包括图中 ) 所给的信息,求小滑块的质量、容器的半径及滑块运动过程中的守恒量。(g 取10m s2)(选讲)例五 如 图为宇宙中有一个恒星系的示意图,A 为该星系的一颗行星,它绕中央恒星 O 运行轨道近似为圆,天文学家观测得到A 行星运动的轨道半径为R0,周期为T0。( 1)中央恒星 O 的质量是多大?(2)

40、长期观测发现,A 行星实际运动的轨道与圆轨道总存在一些偏离,且周期性地每隔t0 时间发生一次最大的偏离,天文学家认为形成这种现象的原因可能是 A 行星外侧还存在着一颗未知的行星B(假设其运行轨道与A 在同一平面内,且与A的绕行方向相同,并且不考虑除A、B、恒星 O 之外的星球影响,它对A 行星的万有引力引起 A 轨道的偏离 )。根据上述现象及假设,你能对未知行星B 的运动得到哪些定量的预测。针对训练:( ) 1一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球考虑小球由静止开始运动到最低位置的过程A 小球在水平方向的速度逐渐增大B小球在竖直方向的速度逐渐增大C到达最低位置时小球线速度最大D到达最低位置时绳子的拉力等于小球重力() 2如图所示,在斜面上O 点先后以 0 和 2 0 的速度水平抛出A 、B 两小球,则从抛出至第一次着地,两小球的水平位移大小之比可能为A1 :2B1 :3C1 :4D1 :5O()3在粗糙水平木板上放一物块,沿图所示的逆时针方向做匀速圆周运动,圆半径为R,速率 vRg ,ab 为水平直径, cd 为竖直直径 .设运动中木板始终保持水平,物块相对于木板静止,则下列判断中错误的是A 物块始终受四个力作用B 只有在 a、 b、c、d 四点,物块受到的合外力才指向圆心C从 a 运动到 b,物块处于超重状态D 从 b 运动到 a,物块处

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论