导数与不等式证明(绝对精华)讲课稿_第1页
导数与不等式证明(绝对精华)讲课稿_第2页
导数与不等式证明(绝对精华)讲课稿_第3页
导数与不等式证明(绝对精华)讲课稿_第4页
导数与不等式证明(绝对精华)讲课稿_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二轮专题(十一)导数与不等式证明【学习目标】1 .会利用导数证明不等式.2 .掌握常用的证明方法.【知识回顾】一级排查:应知应会1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明 问题.比如要证明对任意 x a,b都有f(x) g(x),可设h(x) f(x) g(x),只要利用导数说明h(x)在a,b上的最小值为0即可.二级排查:知识积累利用导数证明不等式,解题技巧总结如下:(1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服 务于第二问要证明的不等式.(2)多用分析法思考.(3)对于给出的不等式直接证明无法下手,可考虑对不等式进

2、行必要的等价变形后,再去证 明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质, 力求变形后不等式一边需要出现函数关系式.(4)常用方法还有隔离函数法,f(x)min g(x)max,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅 助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题.(5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来.三极排查:易错易混用导数证明数列时注意定义域.9【课堂探究】一、作差(商)法例1、证明下列不等式: ex x

3、1 1nx x 1-1 1n x 1- - x sin x咨x(叱)二、利用f (x)ming(x)max证明不等式12e例 2、已知函数 f(x) ax b (a 1)1nx,(a,b R),g(x) x 一.xe2(1)若函数f(x)在x 2处取得极小值0,求a,b的值;(2)在(1)的条件下,求证:对任意的x1,x2 e,e2,总有f(x1) g(x2).12 .变式:证明:对一切x (0,),都有lnx-x 成立.eex三、构造辅助函数或利用主元法例3、已知m,n为正整数,且1m n,求证:(1 m)n (1 n)m.变式:设函数f (x) lnx, g(x)2x 2 (x 1)(1)

4、试判断 F(x) (x2 1)f(x)g(x)在定义域上的单调性;(2)当 0 a b时,求证 f(b) f(a)2a(b a)22Ja b四、分析法证明不等式例4、设a 1,函数f(x) (1 x2)ex a .若曲线y = f (x)在点P处的切线与x轴平行,2且在点M(m,n)处的切线与直线OP平仃(O是坐标原点),证明:m 3 a - 1.变式:已知函数 f(x) x2lnx.(I)求函数f(x)的单调区间;(n )证明:对任意的t 0 ,存在唯一的s,使t f (s).(出)设(n)中所确定的s关于t的函数为s g(t),证明:当t e2时,有2 见皿 15 ln t 2五、隔离函数

5、例5、已知函数f(x) ex ln(x m).(I )设x 0是f (x)的极值点,求m并讨论f (x)的单调性;(H)当 m 2 时,证明:f(x) 0.变式:已知函数f(x) nx xn,x R,其中n N ,且n 2.(1)讨论f(x)的单调性;(2)设曲线y f (x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y g(x),求证:对于任意的正实数x,都有f(x) g(x);(3)若关于x的方程f(x) a(a为实数)有两个正实数根x1,x2,求证:x2 x1- 2.1 n六、与数列结合例6、已知函数f (x) alnx ax3 (aR).(1)求函数f(x)的单调区间;ln2 I

6、n 3 In 4(2)求证:.一.变式:(1)已知x(0,ln n1(n n,n 2)(2)求证:求证:x 11一In n n,x 11In【巩固训练1121 .已知函数f(x) x lnx,求证:在区间(1,)上,函数f(x)的图像在函数g(x) x的23图像的下方.2 .已知函数f x In1-x . 1 x(I )求曲线y f x在点0, f 0处的切线方程;3(n)求证:当 x 0,1 时,fx 2 x ;3(田)设实数k使得f x k0, 1包成立,求k的最大值.3.已知0nXiX22n nXiX2X1x2 ,求证:24.设函数 f(X) 1n(1 X)(x 0). X(1)判断f(

7、X)的单调性;1 c(2)证明:(1 -)n e(e为自然对数,nN). n105 .已知函数f(x) exx.(1)求函数f(x)的最小值;P ,求实数a的取值范围;(2)设不等式f(x) ax的解集为P,且0,2、一一12(3)设n N ,证明:-2nn6 .已知 f(x) ln(1 x2) ax(a 0).(1)讨论f(x)的单调性;14111证明:H/0尸e(e为自然对数,n N , n 2).7 .已知函数 f(x) ln(1 x) x, g(x) xlnx(1)求函数f(x)的最大值;设0 a b,证明:0 g(a) g(b) 2g(-b) (b a) ln2.2x 18.设函数 f (x) aex In x ,曲线 y xf(x)在点(1, f(1)处的切线为y e(x 1) 2.(I )求22;(U)证明:f (x) 1 .在点A处的切x ce .9.已知函数f x ex ax ( a为常数)的图像与y轴交于点A,曲线y f x 线斜率为-1.(I )求a的值及函数f x的极值;(H)证明:当x 0时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论