数据分析试验三_第1页
数据分析试验三_第2页
数据分析试验三_第3页
数据分析试验三_第4页
数据分析试验三_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中北大学理学院实验报告实验课程:数据分析专业:信息与计算科学班级:13080241学号:1308024101姓名:潘娟中北大学理学院实验三美国50个州七种犯罪比率的数据分析87【实验目的】通过使用SAS软件对实验数据进行主成分分析和因子分析,熟悉数据分析方法,培养学生分析处理实际数据的综合能力。【实验内容】表3给出的是美国50个州每100000个人中七种犯罪的比率数据。这七种犯罪是:Murder(杀人罪),Rape(强奸罪),Robbery(抢劫罪),Assault(斗殴罪),Burglary(夜盗罪),Larceny(偷盗罪),Auto(汽车犯罪)表3美国50个州七种犯罪的比率数据State

2、MurderRapeRobberyAssaultBurglaryLarcenyAutoAlabama14.225.296.8278.31135.51881.9280.7Alaska10.851.696.8284.01331.73369.8753.3Arizona9.534.2138.2312.32346.14467.4439.5Arkansas8.827.683.2203.4972.61862.1183.4California11.549.4287.0358.02139.43499.8663.5Colorado6.342.0170.7292.91935.23903.2477.1Connecti

3、cut4.216.8129.5131.81346.02620.7593.2Delaware6.024.9157.0194.21682.63678.4467.0Florida10.239.6187.9449.11859.93840.5351.4Georgia11.731.1140.5256.51351.12170.2297.9Hawaii7.225.5128.064.11911.53920.4489.4Idaho5.519.439.6172.51050.82599.6237.6Illinois9.921.8211.3209.01085.02828.5528.6Indiana7.426.5123.

4、2153.51086.22498.7377.4Iowa2.310.641.289.8812.52685.1219.9Kansas6.622.0100.7180.51270.42739.3244.3Kentucky10.119.181.1123.3872.21662.1245.4Louisiana15.530.9142.9335.51165.52469.9337.7Maine2.413.538.7170.01253.12350.7246.9Maryland8.034.8292.1358.91400.03177.7428.5Massachusetts3.120.8169.1231.61532.22

5、311.31140.1Michigan9.338.9261.9274.61522.73159.0545.5Minnesota2.719.585.985.81134.72559.3343.1Mississippi14.319.665.7189.1915.61239.9144.4Missouri9.628.3189.0233.51318.32424.2378.4Montana5.416.739.2156.8804.92773.2309.2Nebraska3.918.164.7112.7760.02316.1249.1Nevada15.849.1323.1355.02453.14212.6559.2

6、NewHampshire3.210.723.276.01041.72343.9293.4NewJersey5.621.0180.4185.11435.82774.5511.5NewMexico8.839.1109.6343.41418.73008.6259.5NewYork10.729.4472.6319.11728.02782.0745.8NorthCarolina10.617.061.3318.31154.12037.8192.1Ohio7.827.3190.5181.11216.02696.8400.488NorthDakota0.99.013.343.8446.11843.0144.7

7、Oklahoma8.629.273.8205.01288.22228.1326.8Oregon4.939.9124.1286.91636.435061388.9Pennsylvania5.619.0130.3128.0877.51624.1333.2RhodeIsland3.610.586.5201.01489.52844.1791.4SouthCarolina11.933.0105.9485.31613.62342.4245.1SouthDakota2.013.517.9155.7570.51704.4147.5Tennessee10.129.7145.8203.91259.71776.53

8、14.0Texas13.333.8152.4208.21603.12988.7397.6Utah3.520.368.8147.31171.63004.6334.5Vermont1.415.930.8101.21348.22201.0265.2Virginia9.023.392.1165.7986.22521.2226.7Washington4.339.6106.2224.81605.63386.9360.3WestVirginia6.013.242.290.9597.41341.7163.3Wisconsin2.812.952.263.7846.92614.2220.7Wyoming5.421

9、.939.7173.9811.62772.2282.01、1)分别用样本协方差矩阵和样本相关矩阵作主成分分析,二者的结果有何差异?2)原始数据的变化可否由三个或者更少的主成分反映,对所选取的主成分给出合理的解释。3)计算从样本相关矩阵出发计算的第一样本主成分的得分并予以排序.2、从样本相关矩阵出发,做因子分析。【实验所使用的仪器设备与软件平台】sAsa件【实验方法与步骤】(阐述实验的原理、方案、方法及完成实验的具体步骤等,附上自己编写的程序)1 .1)主成分分析样本协方差矩阵procprincompdata=work.crimecovariance;run;|样本相关矩阵procprincom

10、pdata=work.crime;|run;3)计算从样本相关矩阵出发计算的第一样本主成分的得分并予以排序.89procprincompdata=crimeout=defen;run;procsortdata=defen;byprinl;run;procprintdata=defen;run;2 .从样本相关矩阵出发,做因子分析。procfactordata=work.crimescore;|run;【实验结果】1.1)分别用样本协方差矩阵和样本相关矩阵作主成分分析,二者的结果有何差异?样本协方差矩阵各变量的均值及其标准差:ThePRINDOMPProcedureObservations50V

11、ariables7SiRpleSUH-lesNundsrRapeRobbsr>As»ulI6urslaryLurcenyAuIdMean25.73400000I24.0SW0211,30000001291.9D400U33029iGD00377.52COODOSW拜阳41105962935I加小能u州?432.4557114638,5750WIBB.394417$样本协方差矩阵:CovarianceMatrix样本协方差矩阵的特殊指标:特征值、差额、贡献率、累计贡献率90MurderRapeRobberyAssaultBUrleiryLarcenyAutnNbrderNUrde

12、rUpSS25.011IG5.?5”L4I645J7-1352B205L4EFfepeFfepe25J1115.775E2酉790.513313.53”9电15RobberyFtobbery165.25562,647805.74934.16MW,0026655.9210032.42归转ullAsssajII251.41738.51羽10050.6727OCe,2078112.075348.14Burt1aryBur#"。E15J73313.592然4工。2700S.20187017,94470512.9946664,15Lsrcen/L方rcw-135M013918.1528655.

13、927BI12.07470512,99215U37S.1163681,55AutoAuto5L46726-0110093.425348.1446664/1569B8L5537401.40TotdlVariance21756784.3112EigenvaluesoftheCovarianceMatrixE1oenvelueDifferenceProportionCbPniu1ative121527321.E21330145.00.88940J8842197178.8172678-30.00810.9384324498.417744.00.00110.999646754.33765.70JD030

14、.389852350.10.0001LOOOO630.532.20i00001.000078,9O.OOOD1.0000可以得出主成分为Murder(杀人罪)。Ei&enveclorsPriplPrin;Prin3Prin4prin5PrlnGPrin?MurderMurder-.0000620.003595-.005980瞄邮0.0038770.1574100.98775Rape0.0006500.01G208,0088010.047812004149O.BOEI-J50545RobberyRobbe:d0.0C13530.1369900.1319940.4E4E4I0.964629

15、-.021719-.011875AssaultAssaull0.0C3C58d.197992-,1130560.363075-.463548-.049145-.019849BurglaryEkjrglary0.U22C5Ck94087G-.201253-.1的物-.003217-,U0S672LarcenyLarceny0.99/43-.0223620.0033410.000423(MW?吓-刈侬70.000108AutoAuto0.0032910.3761780.34的的-.016798-J78ESS口04m0.005010Larceny(偷盗罪)与Murder(杀人罪)高度相关,Burgl

16、ary(夜盗罪)与Rape(强奸罪)高度相关,Robbery(抢劫罪)与Auto(汽车犯罪)高度相关,Robbery(抢劫罪)与Larceny(偷盗罪)高度相关,Murder(杀人罪)与Auto(汽车犯罪)高度相关。样本相关矩阵ThePRINCOMPProcedure60ObservfttiartsVariablesteanStDMurderRblpbRabbsryAtthuItBursldryLarcenyAuto7.444DUOOOO25.7344)0000IU.D920000211.30000001291.904000一罐泮比加037?.Sf60000IU.75962995EE.3567

17、2433455”148$吼575皿8133.3H4175SimpleStatI-siitsCorrelationMatrixMurderRspeRobberyA&snulLBui总l&ryLircen/AdtciMurderMurder1.00000.G012L邨"(M郦0.3858-.0754O,Q68BRapeRap©0.60121.Q0Q0Q,限190JU30,71215,27090,3488RobberyRobbery0.48370.5919i.ncoa0.56710.6372。,崛g015907AssauItAssauIt口4跖0.74030-55

18、711.0000LEK90.16800.?758BurglaryBurglary0.33580.71J10.697?0.62231.0000D.2346Q.EE3OLarcenyLarceny-.07540.2789L0C99u.i颁U.23461,0)000.0777AutoAuto0.OS890.34A80.59070.27580.55800.077?1.000091EIgenvaIuesoftheCorrelationMMrixEIgenvalueDifferenceProportionCumu1etive19.707457682.563374860.52880.528621.14408

19、3000.123506800.1G340.693131.020576200.636576110.14530.838940.385001100.107103210.05500.893950*277897890.023078740.03970,833650.254819150.04465437Q3E40.870070.210164780.0300L0000可以看出主成分为Murder(杀人罪),Rape(强女干罪),Robbory(抢劫罪)Ei?envetlorsrlnnrid!-uu-HuOu-nDftoAUQOB-AbrrflcUrUTInui.1OD-Quon.Du*u/_rRUAHL-1A

20、hOu/14Fhvr-nkuAH*_rhH.QurftuAv-1,Tflrtv69iJInuro.Ou,1OuOuQunu.1_rkuMUI-TJcdr(flflflJu-fld-Fhu-LTV!®,uMnclr以什,aryny"3®eDelus.ceo.rpQs,rrIL.u驾Jus-uMHPMJIilHnD1Hrarynygflvu-,e出因此SArgrchuanuos-uAMuMHPMnhHHpunH各成分间没有很高的相关性,没有两个成分的相关度达到0.9以上。Robbory(抢劫罪)与Larceny(偷盗罪)的相关系数为0.736050Rape(强奸罪)与

21、Auto(汽车犯罪)的相关系数为0.750208两者的差别:<1>主成分发生了变化。用样本协方差矩阵求得主成分为Murder(杀人罪)用样本相关矩阵求得主成分为Murder(杀人罪),Rape(强奸罪),Robbory(抢劫罪)。<2>各成分间的相关系数不不相同。所以由样本协方差矩阵,样本相关矩阵求得的主成分一般是不同的。2)原始数据的变化可否由三个或者更少的主成分反映,对所选取的主成分给出合理的解释。<1>用样本协方差矩阵求出的主成分Murder(杀人罪),它的贡献率为98.94%可以用它来代替其他六个变量,其信息损失量是很小的。<2>用样本相

22、关矩阵求出的主成分为Murder(杀人罪),Rape(强奸罪),Robbory(抢劫罪)。Murder(杀人罪)的贡献率为52.96%,Murder(杀人罪)和Rape(强奸罪)的累计贡献率为69.31%,Murder(杀人罪),Rape(强奸罪),Robbory(抢劫罪)三个的累计贡献率为83,89%。可以用这三个主成分来代替7个原始变量,而且也不至于损失原始变量中的太多信息。3)计算从样本相关矩阵出发计算的第一样本主成分的得分并予以排序92ObsStateMurderRapeRobberyAssftu1tBurglaryLarceny1NorthDakota0.99.013.343.fl4

23、4C.11043.0ZSouthDskota2.0E617.9155.7570.51704.J3loft2.310.841.2帆E8122685.14lestVirginia6.013,242,230,9537.411341.75Wisconsin2,a12,952,263.7S4C.92614.26hfewHampshire3.210.729.276.ID1041.77Nebraska3.916.164,7112.7760.02816.1&Vermont1.416.330,H101.21348.22201.03怖in日?.413.538J170.01253J235C.710Monta

24、na5.416.733.21565904.32773.211Minresota2.719.5S5.9SE.81134.72559,312doming5.421.939.7173.fi61l.£2772.213Idaho5.619.439,6172.51050.82G89.G14Utah3.&20.968.8147.3I1W.E3004.615Pencsy1vania5.619.0130.9128.0877.51624.116Kentucl</Yirinia1QJ18JSI.1123.3872.21662,1173.023.392.1165.7986.22521.2ISM

25、ississippi14.919.665.7189.1915.61288.819Kftrksas6.E2240100.7130.51270.42733.320Arkansas3.»2LE降2208.4972.B18B2J21Connecticut4.216.81129.5131.S1846.02(20.722Indiana7.4练5123.2153.51036.22498.723RhodeIsland印10.566.5201.ID1489.52844.124NorthCstrO'lIna10,617.061,931g.21154.12037.825Ok1ahoma»

26、,6294273.H205.01288.2222S.i26阳wJerseyR.62L0100.4185J1435#?74,527Haaii7.2£5.512S.064.11911.53920.42SOhio7.S27.3190.5131.11218,02696.S29Tennessee10.129.7145.82*91259.?1776.590Alabaza14.?26.296,H278.31135.51891.331Dsloart6.02448157.0194.21B82.68G78.4SAS系统2016年。制旧星期三上午。场ObsAutoPrinlPrin2PrinSPrinlP

27、riMPrinSPrin71144.7-3.823930.223660.0545?0.23310-0.10104-OJ0195-0.435162147.5-2.89759-0.17857Q.32568-C.142501.35&12-0.SS349-0.442533219.$-2.732710.385370.003040,05178-0.13318-0.307630.032344163.3-2.87196-0.603610.100050.43749-1.088560.1004S-0.098085220.7-2,S660Q1.37462-0,042230.13374-0.39222-0.0

28、8091-0,073776293.42504580”525450.21564-C.,213965-0J71SS0.12530Q.see421249.1-2.125890.06620Q.02502C.1S190*0.05399-0.09270-Q.43459g265.2-2.03424O,.7717S-0.10537-0.82610-0.57322-0J75530.21957924S.3-1.830710.405540.05353-C.75E03-a.iooes-D.5848S0.4025210309.2-1.929S4-0.0459S0.106080,091730.48091k顺30-D.06

29、55411348.1-1.S54750.77129-0.3E03G-C.16310-0U92E70.08590-0.2407712282.0-1.56779-0.185670.31673-C,0i74770.422750.05493-g.4105013237.6'1.60014-L.201140.39222-Q.3和的0.07754-0.060930.0613914334.5-1.327430.53535-0.0510S-0*37274-0.11851-C.11009-0.1020E15333.2-1.320780.01118-0.462730.57334-0.14641<0.1

30、154030655IE246.4-1.30764-0.827200.0425SC.65887-0.10024C.568790.1748117226.7-0.38129-0J66870.3225(U5第。-0J44000.25240-0,0499918H4.4'0.81874畸80.600600.100910644?0.G3G1S19244.3-0.72378-0.21492Q.19778-0.14301-0.87664-0.170330.1546720163.4-0.69403-L.056640.522080.05519-0.062910.013002-0.3698621538.2-O

31、.G2012L.2423D1.1214SC.053270.090190.136450.3027522377.4-0.46S53-0.05824-0.197140.235250.134310,32850-0.3596423791.4-0.30022L784线-1.G0096-0.407941.137590.071210.9639724192.1-0.38399-L.417540.62093-0.150360,71897-0.49389Q.B693525326.8'0.12009-L.462700.2?429-0.382710.010B0H.4326S-0.101302G511.50.12

32、9880/6988-0.84133C.1S421-0J7061-0.264200.2118927469.40.170271.04430-0.57074-0.34414-1.225701.035790.6537626400.40.2加150.0108?-0.333840.57098-0-34999-0.04418-0.2991S29314.00,30359-0.75340-5,014440.23550-0.301560.25268-0,1477630280.70.399G2-1.894610.412050.377550-533710.411980-52368314E7.00.4S5950.754

33、72-0.41699-C.28279*0,43264-0.08G870,338642.从样本相关矩阵出发,做因子分析93於S系统201RTheFACTORProcedureRawData505050InputLtttaTypeNumberofRecordsReadNumbernfRecordsUsedNforSignificanceTestsEicenvalueDifferenceProportionCumu1atIve13J07457882,563374860.52960.G29621.144083000J23506300.1G840,B83131.020576200,635575110.14580.898940.385001100JO71

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论