正弦定理和余弦定理的应用举例(解析版).._第1页
正弦定理和余弦定理的应用举例(解析版).._第2页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、正弦定理和余弦定理的应用举例考点梳理1. 用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2. 实际问题中的常用角仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图).(2) 方向角:相对于某正方向的水平角,如南偏东30°,北偏西45。,西偏北60°等;(3) 方位角指从正北方向顺时针转到目标方向线的水平角,如b点的方位角为a如图).(4) 坡度:坡面与水平面所成的二面角的度数.【助学微博】解三角形应用题的一般步骤(1) 阅读理解题

2、意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2) 实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所

3、要求的解.考点自测1.(2012.江苏金陵中学)已知ABC的一个内角为120。,并且三边长构成公差为4的等差数列,则三角形的面积等于.解析记三角形三边长为a4,a,a+4,则(a+4)2=(a4)2+a22a(a4)cos120°,解得a=10,故S=|xi0X6Xsin120°=13.答案15/32若海上有A,B,C三个小岛,测得A,B两岛相距10海里,ZBAC=60°,ZABC=75°,则B,C间的距离是海里.ABRC_解析由正弦定理,知sin60°=sin(180°60°75°)解得BC=5(2013日照调研

4、)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为海里/时.解析由正弦定理,得MN=68sin450°=34j6海里),船的航行速度为34扌6=海里/时).答案呼4.在ABC中,若23absinC=a2+b2+c2,则ABC的形状是.解析由2,;3absinC=a2+b2+c2,a2+b2c2=2abcosC相加,得a2+b2=2absinc+彳)又a2+b2三2ab,所以sinc+6)±1,从而sinfc+gj=1,且a=b,C=£时等号成立,所以ABC是等

5、边三角形.答案等边三角形(海里)答案5;65.(2010.江苏卷)在锐角ABC中,角A,B,C的对边分别为a,b,c.若|+|tanC,tanC=6cosC,则亦+翻的值疋解析利用正、余弦定理将角化为边来运算,因为b+a=6cosC,由余弦定理tanC.tanCsinC6tanAtanBcosClcosAcosBsinA11sinB丿3即a2+b2=22.而/Ba2+b2a2+b2c2得ab6°2ab,考向一测量距离问题sinCsinCc22c22c2cosCsinAsinB-a2+b2c2_a2+b2c2_3一4心2ab2c2c2答案4【例1】如图所示,A、B、C、D都在同一个与水

6、平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1km.(1)求证:AB=BD;求BD.证明在AACD中,ZDAC=30°,ZADC=60°ZDAC=30°,所以CD=AC=0.1.又ZBCD=180。一60°60°=60°,故CB是ACAD底边AD的中垂线,所以BD=BA.解在AABC中,ABACsinZBCAsinZABC'即AB=AC特二如2存(km),因此,BD=3<2+卡

7、20(km)故B、D的距离约为肌°km.方法总结(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】隔河看两目标A与B,但不能到达,在岸边先选取相距寸3千米的C,D两点,同时测得ZACB=75。,ZBCD=45°,ZADC=30°,ZADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.解如题图所示,在AACD中,TZADC=30°,ZACD=120°,ZCAD=30°,AC=CD=

8、/3(千米).在ABDC中,ZCBD=180。一45。一75。=60。.由正弦定理,可得BC鸞05。乌羽(千米)在ABC中,由余弦定理,可得AB2=AC2+BC22ACBCcosZBCA,即AB2=(也)2+障+申22羽並cos75。=5,ab=.J5(千米).所以两目标A,B间的距离为胪千米.考向二测量高度问题【例2】(2010江苏)某兴趣小组要测量电视塔AE的高度H(单位:m)如图所示,垂直放置的标杆BC的咼度h=4m,仰角/ABE=a,/ADE=p.(1)该小组已测得一组a、B的值,算出了tana=1.24,tan”=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当

9、调整标杆到电视塔的距离d(单位:m),使a与”之差较大,可以提高测量精度若电视塔的实际高度为125m,试问d为多少时,a_B最大?亠H由AB二tanaAB+BD=AD得耳tanahtan卩Hhtana4X1.24解得h=tan”用'tanatan“1.241.20因此,算出的电视塔的高度H是124m.(2)由题设知d=AB,得tana=p.,Hh/口门Hh由AB=ADBD=tan耐,得tan0=d,tanatan0hhtan(a0)=1+tanatan0一d_、_H(Hh厂2:H(Hh)'d当且仅当d=H(Hh)d即d=jH(Hh)=;125X(125_4)=55庐时,上式取n

10、n等号所以当d=55:5时,tan(a0)最大因为0<0<a<2,则Ova0<2,所以当d=55远时,a0最大故所求的d是55卡m.方法总结(1)测量高度时,要准确理解仰、俯角的概念.(2) 分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3) 注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得ZBCD=a,ZBDC=0,CD=s,并在点C测得塔顶A的仰角为0,求塔高AB.解在ABCD中,/CBD=naB,bcCD由正弦疋里得sinZBDCsinZCBD,CDsi

11、nZBDC所以心sinZCBD=ssin卩sin(a+“)stan0sin卩sin(a+“)在RtABC中,AB=BCtanZACB=考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45。方向,距离AC./3l)km的B处有一艘“敌舰”.在A处北偏西75。的方向,距离A2km的C处的“大连号”驱逐舰奉命以10<3km/h的速度追截“敌舰”.此时,“敌舰”正以10km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用th在D处追上“敌舰”,则有CD=10品,BD=10t,如图在ABC

12、中,.AB=/31,AC=2,ZBAC=120。,由余弦定理,得BC2=AB2+AC22ABACcosZBAC=(V31)2+222G;'31)2cos120。=6bc=;6且sinZABC=BC°sinZBAC=?.ZABC=45°,BC与正北方向垂直.ZCBD=90°+30°=120。,在ABCD中,由正弦定理,得sinZBCD=BDsinZCBDCD10tsin120°=110佝=2AZBCD=30°.即“大连号”沿东偏北30。方向能最快追上“敌舰”.方法总结用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三

13、角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013广州二测)北0-3东R:南如图,渔船甲位于岛屿A的南偏西60。方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东«的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sina的值.解(1)依题意知,ZBAC=120°,AB=12(海里),AC=10X2=20(海里),ZBCA=a,在ABC中,由余弦定理,得BC

14、2=AB2+AC22ABACcosZBAC=122+2022X12X20Xcos120°=784.Be解得BC=28(海里).所以渔船甲的速度为亍=14海里/时.在ABC中,因为AB=12(海里),ZBAC=120°,BC=28(海里),ZBCA=a,由正弦定理,得-AB-=-BC20O.sinasin120°2XlABsin120°12233BC即sina=乔=28-=4.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sinZCED=解析在RtEAD和RtEBC中,易知ED=.辽,EC=j

15、W,在DEC中,ED2+EC2CD22+513"10由余弦定理得cosZCED=2ed.ec=2心"="T.AsinZCED10.2.(2011.新课标卷)在ABC中,B=60°,AC=,则AB+2BC的最大值为解析由正弦定理知號二盃。二snA.AB=2sinC,BC=2sinA.又A+C=120。,.AB+2BC=2sinC+4sin(120。一C)=2(sinC+2sin120°cosC2cos120°sinC)=2(sinC+;3cosC+sinC)=2(2sinC+£cosC)=7sin(C+a),其中tana=&#

16、165;,a是第一象限角.由于0°VCV120。,且a是第一象限角,因此AB+2BC有最大值2厅答案2苛3.(湖北卷改编)若ABC的三边长为连续三个正整数,且A>B>C,3b=20acosA,贝UsinA:sinB:sinC=解析由A>B>C,得a>b>c.设a=c+2,b=c+1,则由3b=20acosA,得3(c2(c+1)c+1)=20(c+2)(c+1):+J(c+2)2,即3(c+1)2c=10(c+1)(c+2)(c3),解得c=4,所以a=6,b=5.答案6:5:44.(2陕西卷)如图,A,B是海面上位于东西方向相距5(3+3)海里的

17、两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60。且与B点相距2/3海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D点需要多长时间?解由题意知AB=5(3+,'3)海里,ZDBA=90°60°=30°,ZDAB=90。一45。=45。,所以ZADB=180。一(45°+30°)=105°,DBAB在AADB中,由正弦定理得sinZDAB=sinZADB,所以DB_ABsinZDAB5(3+迈)sin45°=sinZADB=

18、sin105°=10羽(海里),5(3+羽)sin45°sin45°cos60°+cos45°sin60°又ZDBC=ZDBA+ZABC=30°+(90°-60°)=60°,BC=20书(海里),在ADBC中,由余弦定理得CD2=BD2+BC22BDBCcosZDBC=300+1200-2X10讨3X2.,''3x|=900,30所以CD=30(海里),则需要的时间匸=茹=1(小时).所以救援船到达D点需要1小时.(江苏省2013届高三高考压轴数学试题)在厶ABC中,角A,B,C

19、所对的边分别为a,b,c,已知a=5,b=4,cos(AB)3132(I)求sinB的值;仃I)求cosC的值.年沬二:()解:在AC中,因为农'乩所又=可知卫E尢廡且叫一沪導由正弦定星Sj=rl-于是sinAa沁吕曲cosB3smB=sinA=£1门(卫一占)=sm(j45)cos5+cas(4B)sinB4将cosfl-召)更逊(丿-月)的值代入可得曲月=【II)解:由B<A矗心=丄SDcq3£=-.所以44cos-4=cos(j4-5)+5=一卫)cos5-sm(4-5)siti531 337V?_932 432416于是"爭用cos(j4+B

20、)=cosAcosB-sinj4smB=lx3_5x=_l1641648故匚xU=cosjT(j4+B)=cos(j4+S')=分层训练A级基础达标演练(时间:30分钟满分:60分)、填空题(每小题5分,共30分)1. 若渡轮以15km/h的速度沿与水流方向成120。角的方向行驶,水流速度为4km/h,则渡轮实际航行的速度为(精确到0.1km/h).答案13.5km/h2. 江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30。角,则两条船相距m.解析如图,OM=AOtan45

21、6;=30(m),ON=AOtan30。=咅X30=10、./3(m),由余弦定理得,MN=900+3002X30X13X*=:'300=10、/3(m).答案10住3. 某人向正东方向走xkm后,他向右转150°,然后朝新方向走3km,结果他离出发点恰好羽km,那么x的值为.C解析如图,在ABC中,AB=x,BC=3,AC=J3,ZABC=30°,由余弦定理得;3)2=32+x22X3xXcos30°,即x23乐+6=0,解得旺=启,x2=2/3,经检测均合题意.答案或2:34. 如图所示,为了测量河对岸A,B两点间的距离,在这一岸定一基线CD,现已测出

22、CD=a和ZACD=60。,ZBCD=30°,ZBDC=105°,ZADC=60°,则AB的长为.解析在AACD中,已知CD=a,ZACD=60°,ZADC=60°,所以AC=a.®在ABCD中,由正弦定理可得BC=a;:1005ha.在ABC中,已经求得AC和BC,又因为ZACB=30°,所以利用余弦定理可以求得A,B两点之间的距离为AB=;AC2+BC22ACBCcos30。=a.答案fa5.(2010新课标全国卷)在ABC中,D为边BC上一点,BD=*CD,ZADB=120°,AD=2,若AADC的面积为3_

23、辽,则ZBAC=解析由A作垂线AH丄BC于H.因为S&D占1DADCsin6O°=2x2XDC亨=3羽,所以DC=2(J31,又因为AH±BC,ZADH=60°,所以DH=ADcos60°=1,AHC=2'31)一DH=2;33.又bd=1cd,:.bd=、/3i,:.bh=bd+dh=/3.又AH=ADsin60°=込,所以在RtAABH中AH=BH,:/BAH=45°.9又在RtAAHC中tanZHAC=HHC=233所以ZHAC=15°.又ZBAC=ZBAH+ZCAH=60。,故所求角为60°

24、.答案60°6. 如图,为测得河对岸塔AB的咼,先在河岸上选一点C, 使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D, 测得ZBDC=45°,则塔AB的高是米.BCD=15°+90°=105°,ZDBC=30°,CDsin45°厂sin45°sin30°,BC=sin30°=10J2BCCD(米).在RtAABC中,tan60°=ABBCAB=BCtan60°=1;'6(米).解析在ABCD中,CD=10(米),ZBDC=45°,ZA答案10召二、解答题(每小题15分,共30分)7. (2011.常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N、M在OB上,设矩形PNMQ的面积为y,(1)按下列要求写出函数的关系式:设PN=x,将y表示成x的函数关系式;设/POBf将y表示成3的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y的最大值.解.ON=OP2PN2=j3_x2,OM=x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论