




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、MATLAB作业二参考答案1、试求下面线性代数方程的解析解与数值解,并检验解的正确性。一2-93211-1-4010-11050-3-8-4X=8-2-4-630335_6-6-8-4_19-53_【求解】求出A,A;B两个矩阵的秩,可见二者相同,所以方程不是矛盾方程,应该有无穷多解。>>A=2,-9,3,-2,-1;10,-1,10,5,0;8,-2,-4,-6,3;-5,-6,-6,-8,-4;B=-1,-4,0;-3,-8,-4;0,3,3;9,-5,3;rank(A),rank(AB)ans=44用下面的语句可以求出方程的解析解,并可以验证该解没有误差。>>x0
2、=null(sym(A);x_analytical=sym(A)B;symsa;x=a*x0x0x0+x_analyticalx=a+967/1535,a-943/1535,a-159/1535-1535/1524*a,-1535/1524*a,-1535/1524*a-3659/1524*a-1807/1535,-3659/1524*a-257/1535,-3659/1524*a-141/15351321/508*a+759/1535,1321/508*a-56/1535,1321/508*a-628/1535-170/127*a-694/307,-170/127*a+719/307,-17
3、0/127*a+103/307>>A*x-Bans=0,0,00,0,00,0,00,0,0用数值解方法也可以求出方程的解,但会存在误差,且与任意常数a的值有关。>>x0=null(A);x_numerical=AB;symsa;x=a*x0x0x0+x_numerical;vpa(x,10)ans=.2474402553*a+.1396556436,.2474402553*a-.6840666849,.2474402553*a-.1418420333-.2492262414*a+.4938507789,-.2492262414*a+.7023776988e-1,-.2
4、492262414*a+.3853511888e-1-.5940839201*a,-.5940839201*a,-.5940839201*a.6434420813*a-.7805411315,.6434420813*a-.2178190763,.6434420813*a-.5086089095-.3312192394*a-1.604263460,-.3312192394*a+2.435364854,-.3312192394*a+.3867176824>>A*x-Bans=1/18014398509481984*a,1/18014398509481984*a,1/1801439850
5、9481984*a-5/4503599627370496*a,-5/4503599627370496*a,-5/4503599627370496*a-25/18014398509481984*a,-25/18014398509481984*a,-25/18014398509481984*a13/18014398509481984*a,13/18014398509481984*a,13/18014398509481984*a2、求解下面的联立方程,并检验得出的高精度数值解(准解析解)的精度。X1X21022(X1-2)2(X2-0.5)2-1=0【求解】给出的方程可以由下面的语句直接求解,经检验
6、可见,精度是相当高的。>>x1,x2=solve('x1A2-x2-1=0','(x1-2)A2+(x2-0.5)A2-1=0','x1,x2')x1=-1.3068444845633173592407431426632-1.2136904451605911320167045558746*sqrt(-1)-1.3068444845633173592407431426632+1.2136904451605911320167045558746*sqrt(-1)1.06734608580668971340859731280701.54634
7、28833199450050728889725194x2=-.76520198984055124633885565606586+3.1722093284506318231178646481143*sqrt(-1)-.76520198984055124633885565606586-3.1722093284506318231178646481143*sqrt(-1).139227666886861440483624988051411.3911763127942410521940863240803>>norm(double(x1.A2-x2-1仅1-2).人2+依2-0.5).A2-1
8、)ans=6.058152713871457e-03110X1-X2-2x3=723、用Jacobi、Gauss-Seidel迭代法求解方程组一为+10X2-2X3=83,给定初值为-X1-x25x3=42x(0)=(0,0,0)T。【求解】:编写Jacobi、Gauss-Seidel函数计算,functiony=jacobi(a,b,x0)D=diag(diag(a);U=-triu(a,1);L=-tril(a,-1);B=D(L+U);f=Db;y=B*x0+f;n=1;whilenorm(y-x0)>=1.0e-6x0=y;y=B*x0+f;n=n+1;endn>>a
9、=10,-1,-2;-1,10,-2;-1,-1,5;b=72;83;42;>>jacobi(a,b,0;0;0)n=17ans=11.000012.000013.0000functiony=seidel(a,b,x0)D=diag(diag(a);U=-triu(a,1);L=-tril(a,-1);G=(D-L)U;f=(D-L)b;y=G*x0+f;n=1;whilenorm(y-x0)>=1.0e-6x0=y;y=G*x0+f;n=n+1;endn>>seidel(a,b,0;0;0)n=10ans=11.000012.000013.00004、假设已知一
10、组数据,试用插值方法绘制出xw(-2,4.9)区间内的光滑函数曲线,比较各种插值算法的优劣。X-2-1.7-1.4-1.1-0.8-0.5-0.20.10.40.711.3V.10289.11741.13158.14483.15656.16622.17332.1775.17853.17635.17109.16302X1.61.92.22.52.83.13.43.744.34.64.9V.15255.1402.12655.11219.09768.08353.07015.05786.04687.03729.02914.02236【求解】用下面的语句可以立即得出给定样本点数据的三次插值与样条插值,得
11、出的结果如,可见,用两种插值方法对此例得出的结果几乎一致,效果均很理想。>>x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.0
12、5786,0.04687,.0.03729,0.02914,0.02236;x0=-2:0.02:4.9;y1=interp1(x,y,x0,'cubic');y2=interp1(x,y,x0,'spline');plot(x0,y1,':',x0,y2,x,y,'o')5、假设已知实测数据由下表给出,试又(x,y)在(0.1,0.1卜(1.1,1.1)区域内的点进行插值,并用三维曲面的方式绘制出插值结果。VXiX2X3X4X5xX7X8X9x10X1100.10.20.30.40.50.60.70.80.911.10.1.83
13、041.82727.82406.82098.81824.8161.81481.81463.81579.81853.823040.2.83172.83249.83584.84201.85125.86376.87975.89935.92263.94959.98010.3.83587.84345.85631.87466.89867.9284.963771.00451.05021.11.15290.4.84286.86013.88537.91865.959851.00861.06421.12531.19041.2571.32220.5.85268.88251.92286.973461.03361.10
14、191.17641.2541.33081.40171.46050.6.86532.91049.968471.03831.1181.20461.29371.37931.45391.50861.53350.7.88078.943961.02171.11181.21021.3111.40631.48591.53771.54841.50520.8.89904.982761.0821.19221.30611.41381.50211.55551.55731.49151.3460.9.920061.02661.14821.27681.40051.50341.56611.56781.48891.31561.0
15、4541.943811.07521.21911.36241.48661.56841.58211.50321.3151.0155.624771.1.970231.12791.29291.44481.55641.59641.53411.34731.0321.61268.14763【求解】直接采用插值方法可以解决该问题,得出的插值曲面。>>x,y=meshgrid(0.1:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.81824,0.8161,0.81481,0.81463,0.81579,0.81853,0.82304;0.83172,0.8
16、3249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.94959,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.1529;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.3222;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.33
17、08,1.4017,1.4605;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;0.89904,0.98276,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5573,1.4915,1.346;0.92006,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661
18、,1.5678,1.4889,1.3156,1.0454;0.94381,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.62477;0.97023,1.1279,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.61268,0.14763;x1,y1=meshgrid(0.1:0.02:1.1);z1=interp2(x,y,z,x1,y1,'spline');surf(x1,y1,z1)axis(0.1,1.1,0.1,1.1,min(z1(:
19、),max(z1(:)其实,若光需要插值曲面而不追求插值数值的话,完全可以直接采用MATLAB下的shadinginterp命令来实现。可见,这样的插值方法更好,得出的插值曲面更光滑。>>surf(x,y,z);shadinginterp6、习题4和5给出的数据分别为一元数据和二元数据,试用分段三次样条函数和B样条函数对其进行拟合。【求解】先考虑习题4,相应的三次样条插值和B-样条插值原函数与导数函数分别为:> >x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,1.6,1.92225283134,374,4.3,
20、4.649;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,0.03729,0.02914,0.02236;S=csapi(x,y);S1=spapi(6,x,y);fnplt(S);holdon;fnplt(S1)> >Sd=fnder(S);Sd1=fnder(S1);fnplt(Sd),hol
21、don;fnplt(Sd1)再考虑习题5中的数据,原始数据不能直接用于样条处理,因为meshgrid()函数产生的数据格式与要求的ndgrid()函数不一致,所以需要对数据进行处理,其中需要的x和y均应该是向量,而z是原来z矩阵的转置,所以用下面的语句可以建立起三次样条和B-样条的插值模型,函数的表面图所示,可见二者得出的结果很接近。> >x,y=meshgrid(0:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.81824,0.8161,0.81481,0.81463,0.81579,0.81853,0.82304;0.83172,0.
22、83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.94959,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.1529;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.3222;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3
23、308,1.4017,1.4605;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;0.89904,0.98276,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5573,1.4915,1.346;0.92006,1.0266,1.1482,1.2768,1.4005,1.5034,1.566
24、1,1.5678,1.4889,1.3156,1.0454;0.94381,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.62477;0.97023,1.1279,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.61268,0.14763;> >x0=0.0:0.1:1;y0=x0;z=z'S=csapi(x0,y0,z);fnplt(S)figure;S1=spapi(5,5,x0,y0,z);fnplt(S1)> >S1x=
25、fnder(S1,0,1);fnplt(S1x)figure;S1y=fnder(S1,0,1);fnplt(S1y)7、重新考虑习题4中给出的数据,试考虑用多项式插值的方法对其数据进行逼近,并选择一个能较好拟合原数据的多项式阶次。【求解】可以选择不同的多项式阶次,例如选择3,5,7,9,11,则可以对其进行多项式拟合,并绘制出曲线。>>x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0,7,1,1.3,.1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9;y=0.10289,0.11741,0.1315
26、8,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;x0=-2:0.02:4.9;p3=polyfit(x,y,3);y3=polyval(p3,x0);p5=polyfit(x,y,5);y5=polyval(p5,x0);p7=polyfit(x,y,7);y7=polyval(p7,x0);p9=pol
27、yfit(x,y,9);y9=polyval(p9,x0);p11=polyfit(x,y,11);y11=polyval(p11,x0);plot(x0,y3;y5;y7;y9;y11)从拟合的结果可以发现,选择5次多项式就能较好地拟合原始数据。8、假设习题4中给出的数据满足原型y(x)=7e,x*2/2”,试用最小二乘法求出2二二出仃的值,并用得出的函数将函数曲线绘制出来,观察拟合效果。【求解】令a1=巴a2=。,则可以将原型函数写成y(x)=eT)2/2aJ2a2这时可以写出原型函数为>>f=inline('exp(-(x-a(1).A2/2/a(2)A2)/(sqr
28、t(2*pi)*a(2)','a','x');由原型函数则可以用下面的语句拟合出待定参数2且?,。这样,拟合曲线得出的拟合效果是满意的。>>x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,.1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.1525
29、5,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;a=lsqcurvefit(f,1,1,x,y)a=0.346057535548862.23400202798747>>x0=-2:0.02:5;y0=f(a,x0);plot(x0,y0,x,y,'o')9、假设习题5中数据的原型函数为z(x,y)=asin(x2y)+bcos(y2x)+cx2+dxy+e,试用最小二乘方法识别出a,b,c,d,e的数值。【求解】用下面的语句可以用最小
30、二乘的得出>>x,y=meshgrid(0.1:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.81824,0.8161,0.81481,0.81463,0.81579,0.81853,0.82304;0.83172,0.83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.94959,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.1529;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.3222;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3308,1.4017,1.4605;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版沥青路面施工劳务分包合同规范文本
- 2025年晋江市新佳园物业发展有限公司招聘项目制工作人员14人笔试参考题库附带答案详解
- 浙江国企招聘2025温州瑞安市建设工程检测科学研究所有限公司招聘3人笔试参考题库附带答案详解
- 2025江西江铜硅瀛新能源科技有限公司招聘8人笔试参考题库附带答案详解
- 2025四川雅安文投中医药大健康产业发展有限公司考察聘用1名主管会计笔试参考题库附带答案详解
- 2025届中国电建地产校园招聘网申平台笔试参考题库附带答案详解
- 七下嘉兴数学试卷
- 2025湖北武商集团周大福梦时代店招聘笔试参考题库附带答案详解
- 2025年资中县兴资投资开发集团有限责任公司招聘14名笔试参考题库附带答案详解
- 宁夏银川中考数学试卷
- 乡村振兴大讲堂课程设计
- 医患沟通和技巧课件
- 农业代收代付业务管理规定
- 中小学德育工作指南解读-思维导图
- 内镜中心人员培训管理制度
- 广西南宁宾阳县昆仑投资集团有限公司招聘笔试题库2024
- 2024-2030年中国自动驾驶重卡行业发展状况与前景预测报告
- 剧毒化学品从业单位备案登记表
- 2024年企业人力资源管理师三级考试大纲
- DL∕T 1396-2014 水电建设项目文件收集与档案整 理规范
- DB15-T 3516-2024 野生动物救护站建设规范
评论
0/150
提交评论