




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1流变学总复习流变学总复习(fx)第一页,共61页。流变学是一门研究流变学是一门研究(ynji)(ynji)材料流动及变形规律的科学。材料流动及变形规律的科学。流变学是力学的一个新分支,它主要研究流变学是力学的一个新分支,它主要研究(ynji)(ynji)材料材料在应力、应变、温度、湿度、辐射等条件下与时间因素在应力、应变、温度、湿度、辐射等条件下与时间因素有关的变形和流动的规律。有关的变形和流动的规律。 高分子材料流变学则是研究高分子材料流变学则是研究(ynji)(ynji)高分子液体在流动状高分子液体在流动状态下的非线性黏弹行为,以及这种行为与材料结构及其态下的非线性黏弹行为,以及这
2、种行为与材料结构及其物理、化学性质的关系。物理、化学性质的关系。高分子材料流变学可分高分子结构流变学和高分子加工流高分子材料流变学可分高分子结构流变学和高分子加工流变学两大块。变学两大块。第1页/共61页第二页,共61页。高分子流体是一个高分子流体是一个(y )泛意上的概念。泛意上的概念。包括:包括:高分子的均相熔体;多相体系熔体;复合体系熔体;高分子的均相熔体;多相体系熔体;复合体系熔体;乳液;悬浮液;高分子浓溶液、稀溶液等。乳液;悬浮液;高分子浓溶液、稀溶液等。 高分子流体流动高分子流体流动(lidng)行为常常取决于下面多种行为常常取决于下面多种因素:因素:分子量的大小和分子量的分布;分
3、子量的大小和分子量的分布;分子的结构、形状和分子之间的相互作用;分子的结构、形状和分子之间的相互作用;相间的相互作用;相间的相互作用;温度和流场的形状;温度和流场的形状;物理缠结和化学交联等。物理缠结和化学交联等。 第2页/共61页第三页,共61页。影响影响(yngxing)聚合物加工的主要流变性能聚合物加工的主要流变性能 n主要有聚合物的流动性、弹性和断裂特性。主要有聚合物的流动性、弹性和断裂特性。n流动性:以黏度的倒数表示流动性。按作用方式的不流动性:以黏度的倒数表示流动性。按作用方式的不同,流动可以分为剪切流动和拉伸流动;相应地有剪同,流动可以分为剪切流动和拉伸流动;相应地有剪切黏度和拉
4、伸黏度。切黏度和拉伸黏度。n弹性:由于聚合物流体流动时,伴随有高弹形变的产弹性:由于聚合物流体流动时,伴随有高弹形变的产生和贮存,故外力除去后会发生回缩等现象。生和贮存,故外力除去后会发生回缩等现象。n断裂特性:是影响聚合物(尤其是橡胶)加工断裂特性:是影响聚合物(尤其是橡胶)加工(ji gng)的又一流变特性,它主要是指生胶的扯断伸长率的又一流变特性,它主要是指生胶的扯断伸长率,以及弹性与塑性之比。,以及弹性与塑性之比。第3页/共61页第四页,共61页。聚合物流变行为的特性聚合物流变行为的特性多样性多样性: 聚合物的种类和结构,固体高聚物有线性弹性、橡聚合物的种类和结构,固体高聚物有线性弹性
5、、橡胶弹性及黏弹性;溶液和熔体有线性黏性、非线性黏性胶弹性及黏弹性;溶液和熔体有线性黏性、非线性黏性、触变性等不同的流变行为。、触变性等不同的流变行为。高弹性:高弹性: 聚合物所特有的流变行为,轻度交联的高聚物聚合物所特有的流变行为,轻度交联的高聚物(橡胶橡胶)。时间依赖性:时间依赖性: 松弛现象与聚合物长链分子松弛现象与聚合物长链分子(fnz)的结构以及分子的结构以及分子(fnz)链之间互相缠结有关。链之间互相缠结有关。第4页/共61页第五页,共61页。第二第二(d r)部分部分n流体流体(lit)形变类型分为最基本的三类:形变类型分为最基本的三类:n拉伸和单向膨胀;拉伸和单向膨胀;n各向同
6、性的压缩和膨胀;各向同性的压缩和膨胀;n简单剪切和简单剪切流。简单剪切和简单剪切流。 第5页/共61页第六页,共61页。n标量:没有任何方向性的纯数值的量。标量:没有任何方向性的纯数值的量。n如质量、密度、体积等。如质量、密度、体积等。n其特征是其值不随坐标等变换而改变。其特征是其值不随坐标等变换而改变。n矢量:即有大小,又有方向的量。矢量:即有大小,又有方向的量。n如位移、速度、温度梯度等。如位移、速度、温度梯度等。 n张量:物理定义:在一点张量:物理定义:在一点(y din)处不同方向面上具有各个处不同方向面上具有各个矢量值的物理量。流变学中应用的是二阶张量。矢量值的物理量。流变学中应用的
7、是二阶张量。n数学定义:在笛卡尔坐标系上一组有数学定义:在笛卡尔坐标系上一组有3n个有序矢量的集合个有序矢量的集合。nn称为张量的阶数,标量为零阶张量,矢量为一阶张量。称为张量的阶数,标量为零阶张量,矢量为一阶张量。第6页/共61页第七页,共61页。张量的特性张量的特性 如果在一个坐标系中,笛卡儿张量的所有分量都等于零如果在一个坐标系中,笛卡儿张量的所有分量都等于零,那么它们在所有其他笛卡儿坐标系中也等于零。,那么它们在所有其他笛卡儿坐标系中也等于零。 两个两个(lin )同阶笛卡儿张量的和或差仍是同阶张量,同阶笛卡儿张量的和或差仍是同阶张量,于是同阶张量的任何线性组合仍是同阶张量。于是同阶张
8、量的任何线性组合仍是同阶张量。 张量方程的意义。如果某个张量方程在一个坐标系中能张量方程的意义。如果某个张量方程在一个坐标系中能够成立,那么对于用允许变换所能得到的所有坐标系,它够成立,那么对于用允许变换所能得到的所有坐标系,它也成立。也成立。第7页/共61页第八页,共61页。本构方程本构方程(fngchng)n反映流体的力学本质特征的方程;反映流体的力学本质特征的方程;n联系应力张量和应变张量或应变速率联系应力张量和应变张量或应变速率(sl)张量的所张量的所有分量的方程;有分量的方程;n又称为流变状态方程。又称为流变状态方程。n建立本构方程是流变学的中心任务。建立本构方程是流变学的中心任务。
9、第8页/共61页第九页,共61页。线性弹性线性弹性(tnxng)虎克定律与弹性虎克定律与弹性(tnxng)(tnxng)常数常数 虎克定律虎克定律(dngl): (dngl): 应力应力与应变与应变之间存在线性关系之间存在线性关系。 =c 弹性常数弹性常数线性弹性也称为虎克弹性线性弹性也称为虎克弹性 。第9页/共61页第十页,共61页。 拉伸实验中,材料在受拉应力拉伸实验中,材料在受拉应力作用下产生作用下产生(chnshng)长度长度方向的应变方向的应变,根据虎克定律:,根据虎克定律: =E E表示材料的刚性。表示材料的刚性。E越大,产生相同的应变越大,产生相同的应变(yngbin)需要的应力
10、需要的应力越大,越大,即材料不易变形,刚性高即材料不易变形,刚性高 。E为常数,称为为常数,称为(chn wi)杨氏模量杨氏模量或拉伸模量或拉伸模量D1/E =D E的倒数的倒数D称为拉伸柔量(称为拉伸柔量(Tension compliance),),D越大越大表示材料越易变形,刚性低表示材料越易变形,刚性低。 / 泊松比(泊松比(Poisson ratio)由材料)由材料性质决定的性质决定的 ,表示侧边变形的大,表示侧边变形的大小。小。在拉伸实验中,定义在拉伸实验中,定义 :侧侧边的分数减量边的分数减量,也与应,也与应力成正比,在流变学中力成正比,在流变学中使用泊松比使用泊松比第10页/共6
11、1页第十一页,共61页。在各向同性压缩实验中,材料的应变应为其体积的变化分数在各向同性压缩实验中,材料的应变应为其体积的变化分数V/V。所加应力用压力。所加应力用压力(yl) P来表示,则:来表示,则:PKV/V0 K为弹性常数,称为为弹性常数,称为(chn wi)体积模量(体积模量(Bulk modulus) B1/K V/V0=BP B为体积为体积(tj)柔量(柔量(Bulk compliance) G G为弹性常数,称为剪切模量为弹性常数,称为剪切模量第11页/共61页第十二页,共61页。简单简单(jindn)(jindn)剪切实验剪切实验 G G为弹性常数为弹性常数(chngsh),称
12、为剪切模量(,称为剪切模量(Shear modulus) J1/G J J称为称为(chn wi)剪切柔量剪切柔量 (Shear compliance)E,G,K和和 弹性常数不是相互独立的,而是相互有一定的关系。因弹性常数不是相互独立的,而是相互有一定的关系。因此表征一个材料的线性弹性只需其中两个就足够此表征一个材料的线性弹性只需其中两个就足够 。第12页/共61页第十三页,共61页。线性弹性变形线性弹性变形(bin xng)的特点的特点(5)应力)应力(yngl)与应变成线性关系与应变成线性关系=E(4 4)无能量)无能量(nngling)(nngling)损失损失(3)变形在外力移除后完
13、全回复)变形在外力移除后完全回复 (1)变形小)变形小(2)变形无时间依赖性)变形无时间依赖性 第13页/共61页第十四页,共61页。线性黏性变形线性黏性变形(bin xng)(bin xng)的的特点特点 (1)变形)变形(bin xng)的时间依赖性的时间依赖性流体的变形随时间流体的变形随时间(shjin)(shjin)不断发展,即时间不断发展,即时间(shjin)(shjin)依赖性。依赖性。 (2)流变变形的不可回复性)流变变形的不可回复性 这是黏性变形的特点,其变形是永久性的,称为永久变形。聚合物这是黏性变形的特点,其变形是永久性的,称为永久变形。聚合物熔体发生流动,涉及到分子链之间
14、的相对滑移,当然,这种变形是不熔体发生流动,涉及到分子链之间的相对滑移,当然,这种变形是不能回复的。能回复的。 (3)能量散失)能量散失 外力对流体所作的功在流动中转化为热能而散失,这一点与弹性变形过外力对流体所作的功在流动中转化为热能而散失,这一点与弹性变形过程中储能完全相反。程中储能完全相反。(4)正比性)正比性线性黏性流动中应力与应变速率(剪切速率)成正比,黏度与应变速线性黏性流动中应力与应变速率(剪切速率)成正比,黏度与应变速率无关。率无关。 第14页/共61页第十五页,共61页。流动流动(lidng)(lidng)方式(测黏流动方式(测黏流动(lidng)(lidng)) 1 1 圆
15、管中流体的稳定圆管中流体的稳定(wndng)(wndng)层流层流测定流体通过一根细管流动的流量来测定流体的测定流体通过一根细管流动的流量来测定流体的黏度是常用的方法。假定流动是稳定黏度是常用的方法。假定流动是稳定(wndng)的的:即流体内每个质点的流动速度不随时间变化。:即流体内每个质点的流动速度不随时间变化。可看作圆管中许多无限薄的同心圆柱状流体薄层的流动。可看作圆管中许多无限薄的同心圆柱状流体薄层的流动。Q R4(P)/8l Hagen-Poiseuille(哈根(哈根泊肃叶)方程泊肃叶)方程流量与单位长度上的压力降并与流量与单位长度上的压力降并与管径的四次方成正比。管径的四次方成正比
16、。第15页/共61页第十六页,共61页。2 2 扭转扭转(nizhun)(nizhun)流动流动扭转流动发生在两个平行的圆盘之间,圆盘的半径扭转流动发生在两个平行的圆盘之间,圆盘的半径(bnjng)(bnjng)为为R R,两圆盆之间的距离为两圆盆之间的距离为h h,上圆盘以角速度,上圆盘以角速度旋转,施加的扭矩为旋转,施加的扭矩为M M。 扭转扭转(nizhun)(nizhun)流动流动 hRM24扭转流动测定黏度的基本公式扭转流动测定黏度的基本公式第16页/共61页第十七页,共61页。3 3 锥板流动锥板流动(lidng)(lidng)锥板流动发生在一个锥板流动发生在一个(y )(y )圆
17、锥体与一个圆锥体与一个(y )(y )圆盘之间圆盘之间,圆锥与平板之间的夹角,圆锥与平板之间的夹角很小,一般小于很小,一般小于4040,通常圆锥体,通常圆锥体以角速度以角速度 旋转,它的轴与圆盘垂直,也是圆锥体的旋转旋转,它的轴与圆盘垂直,也是圆锥体的旋转轴,圆锥体的顶点与圆盘平面接触轴,圆锥体的顶点与圆盘平面接触 。第17页/共61页第十八页,共61页。总转矩总转矩M:3/23RM32/3RM32/3RMt锥板法测定黏度的基本锥板法测定黏度的基本(jbn)(jbn)公式公式 应力应力(yngl)分量为分量为t第18页/共61页第十九页,共61页。聚合物稀溶液聚合物稀溶液(rngy)(rngy
18、)的黏度的黏度聚合物稀溶液黏度的测定很早被用来聚合物稀溶液黏度的测定很早被用来(yn li)研究聚合物研究聚合物的性质。的性质。这是由于聚合物溶液的黏度与聚合物的分子量、分子大小这是由于聚合物溶液的黏度与聚合物的分子量、分子大小甚至分子结构有直接的关系。所以,聚合物稀溶液黏度的甚至分子结构有直接的关系。所以,聚合物稀溶液黏度的测定至今仍是研究聚合物分子量和分子大小的重要方法测定至今仍是研究聚合物分子量和分子大小的重要方法 。第19页/共61页第二十页,共61页。1 1 特性特性(txng)(txng)黏数的测定黏数的测定 用玻璃黏度计测定的是一定体积溶液用玻璃黏度计测定的是一定体积溶液(rng
19、y)通过毛细管的时间通过毛细管的时间t,通过测定纯溶剂和不同浓度的聚合物稀溶液通过测定纯溶剂和不同浓度的聚合物稀溶液(rngy)通过毛细管的时通过毛细管的时间,可得定义:间,可得定义: (1) 相对相对(xingdu)黏度黏度r 为稀溶液的黏度,为稀溶液的黏度, o纯溶剂的黏度,用重力毛细管测定时:纯溶剂的黏度,用重力毛细管测定时: r / oct00ttrt和和t0分别为稀溶液和纯溶剂分别为稀溶液和纯溶剂通过毛细管的时间通过毛细管的时间 第20页/共61页第二十一页,共61页。 ccrocspc1limlim0(2) 增比黏度增比黏度(nind) sp r1 它表示溶液它表示溶液(rngy)
20、的黏度比纯溶液的黏度比纯溶液(rngy)高的倍数高的倍数(3) 比浓黏度比浓黏度(nind)sp/c sp/c=( r1)/c c为浓度,比浓黏度的单位是浓度的倒数,为浓度,比浓黏度的单位是浓度的倒数,ml/g或或m3/kg (4) 比浓对数黏度比浓对数黏度 cr/ln 单位浓度下溶液相对黏度的对数,单位为单位浓度下溶液相对黏度的对数,单位为ml/g或或m3/kg (5) 特性黏数特性黏数 r, sp都与浓度有关,但特性黏数都却与浓度无关,它决定于都与浓度有关,但特性黏数都却与浓度无关,它决定于聚合物的分子量,分子尺寸以及温度、溶剂等条件。聚合物的分子量,分子尺寸以及温度、溶剂等条件。 第21
21、页/共61页第二十二页,共61页。聚合物熔体聚合物熔体(rn t)(rn t)的黏度的黏度熔融黏度的分子熔融黏度的分子(fnz)(fnz)理论理论n聚合物熔体流动时,由于聚合物熔体流动时,由于(yuy)大分子之间的相互缠绕,单个大分子之间的相互缠绕,单个大分子链不能作整体流动,流动是由链段的运动造成的,它们由大分子链不能作整体流动,流动是由链段的运动造成的,它们由于于(yuy)热运动和受应力场的作用跃入空洞热运动和受应力场的作用跃入空洞(自由体积自由体积)中中 。n流动的速度决定于两个因素:流动的速度决定于两个因素:(a)链段跃迁的快慢;链段跃迁的快慢;(b)使聚合物分使聚合物分子平移所需的跃
22、迁的方式,即跃迁的次数。很显然,前者与分子间的摩子平移所需的跃迁的方式,即跃迁的次数。很显然,前者与分子间的摩擦力有关,后者与聚合物的分子结构有关。擦力有关,后者与聚合物的分子结构有关。第22页/共61页第二十三页,共61页。聚合物的熔体黏度可被认为聚合物的熔体黏度可被认为(rnwi)是两个因数是两个因数F和和的乘积的乘积: F 式中,式中,为单位摩擦力因数为单位摩擦力因数, F为结构为结构(jigu)或协同因数或协同因数。 反比于链段跃迁的速度,可看作反比于链段跃迁的速度,可看作(kn zu)是链段运动的阻力,它是链段运动的阻力,它与分子结构无关而反映链段间局与分子结构无关而反映链段间局部的
23、相互作用。部的相互作用。 是温度的函数,是温度的函数,温度升高,跃迁速度增大,温度升高,跃迁速度增大, 减小减小。根据自由体积理论,这是由于。根据自由体积理论,这是由于温度升高使自由体积增大温度升高使自由体积增大 。 F表示分子运动的方式。表示分子运动的方式。为使分子发生平移,各链为使分子发生平移,各链段的运动必须互相配合,段的运动必须互相配合,所以结构因素所以结构因素F是分子量的是分子量的函数。函数。 第23页/共61页第二十四页,共61页。橡胶弹性橡胶弹性(tnxng)(tnxng)的特点的特点 橡胶是轻度交联的聚合物,其流变橡胶是轻度交联的聚合物,其流变(li bin)(li bin)行
24、为可以用非线行为可以用非线性弹性(也称为橡胶弹性)这一数学模式来描述。性弹性(也称为橡胶弹性)这一数学模式来描述。 (1)形变量大)形变量大 橡胶分子的柔性橡胶分子的柔性(ru xn)好,它们的玻璃化温度远低于室温,因此好,它们的玻璃化温度远低于室温,因此在室温时处于高弹态,链段可以在较大范围内运动,从而能产生很大在室温时处于高弹态,链段可以在较大范围内运动,从而能产生很大的变形,如在拉伸时延伸率可达的变形,如在拉伸时延伸率可达1000。 第24页/共61页第二十五页,共61页。(2)变形能完全回复)变形能完全回复 橡胶分子之间由于互相交联,在变形时分于链顺着外力场的方向伸展,橡胶分子之间由于
25、互相交联,在变形时分于链顺着外力场的方向伸展,分子链由无序状态变为较有序的状态,从热力学观点看,就是熵减少。应分子链由无序状态变为较有序的状态,从热力学观点看,就是熵减少。应力移除后,交联键就恢复到无序状态,变形能完全回复。与线性弹性力移除后,交联键就恢复到无序状态,变形能完全回复。与线性弹性(tnxng)瞬时回复不同,橡胶变形回复不是瞬时的,而需一定时间。瞬时回复不同,橡胶变形回复不是瞬时的,而需一定时间。(3)时间依赖性)时间依赖性橡胶受到外力时,应变是随时间发展的,但不会无限制增大而是橡胶受到外力时,应变是随时间发展的,但不会无限制增大而是趋近一个平衡值,即平衡应变趋近一个平衡值,即平衡
26、应变e 。橡胶变形是靠分子。橡胶变形是靠分子(fnz)链链段运动来实现的,整个分子段运动来实现的,整个分子(fnz)链从一种平衡状态过渡到与外链从一种平衡状态过渡到与外力相适应的平衡状态,这个过程需要力相适应的平衡状态,这个过程需要定的时间。定的时间。(4)小应变时符合)小应变时符合(fh)线性弹性线性弹性小应变时符合小应变时符合(fh)线性弹性,但它的模量很低,为线性弹性,但它的模量很低,为0.11MPa 数量级,比玻璃态聚合物的模量低数量级,比玻璃态聚合物的模量低34个数量级。个数量级。第25页/共61页第二十六页,共61页。(5)变形时有热效应)变形时有热效应 当把橡胶试样急速拉伸(绝热
27、拉伸)时,试样温度升当把橡胶试样急速拉伸(绝热拉伸)时,试样温度升高高(shn o),这种热效应虽然不很强烈,但随伸长程,这种热效应虽然不很强烈,但随伸长程度的增加而增大。度的增加而增大。(6)弹性模量随温度上升而增大,与钢材相反)弹性模量随温度上升而增大,与钢材相反当温度升高时,分子链的热运动加强,回缩力逐渐当温度升高时,分子链的热运动加强,回缩力逐渐(zhjin)变大,弹性形变的能力变小,因而表现为弹性变大,弹性形变的能力变小,因而表现为弹性模量随温度的上升而增大模量随温度的上升而增大 。第26页/共61页第二十七页,共61页。变形变形(bin xng) (bin xng) 在线弹性的拉伸
28、试验中,应变定义为在线弹性的拉伸试验中,应变定义为l/l,长度的分数变化,长度的分数变化 ,这里没这里没有明确式中的有明确式中的l是指原始长度是指原始长度l0还是变形后的长度还是变形后的长度lf。由于在线弹性。由于在线弹性中应变是很小的,所以中应变是很小的,所以(suy)l/l0与与Al/lf的差别是很小的的差别是很小的 。在橡胶弹性中,应变是很大的,所以必须指明在橡胶弹性中,应变是很大的,所以必须指明的定义式是的定义式是l/l0还是还是l/lf,实际上这两种表示,实际上这两种表示(biosh)法都可用,也有用法都可用,也有用别的方法表示别的方法表示(biosh)应变的。在非线性弹性中,常常使
29、用拉应变的。在非线性弹性中,常常使用拉伸比伸比来表示来表示(biosh)拉伸试验中的变形拉伸试验中的变形 。1000lllllf第27页/共61页第二十八页,共61页。线弹性中,定义应力为线弹性中,定义应力为f /A,这里,这里A也没指明是原始面积也没指明是原始面积A0。还。还是变形后的面积是变形后的面积Af,因为,因为A0与与Af在线弹性中是很接近的。在线弹性中是很接近的。橡胶弹性中,橡胶弹性中,A0则与则与Af相差较大。实际应力应为相差较大。实际应力应为f /Af,但由于,但由于A0易于测定,习惯易于测定,习惯(xgun)上还是采用上还是采用f /A0为应力,称为工程应为应力,称为工程应力
30、。力。应力应力(yngl)(yngl)第28页/共61页第二十九页,共61页。Mooney在橡胶弹性统计理论建立之前提出了一种描述橡胶弹在橡胶弹性统计理论建立之前提出了一种描述橡胶弹性的唯象理论。该理论有两条假定:性的唯象理论。该理论有两条假定:(1)橡胶是不可压缩的,在未应变状态下各向同性;)橡胶是不可压缩的,在未应变状态下各向同性;(2)简单剪切形变的状态方程可由虎克定律)简单剪切形变的状态方程可由虎克定律(dngl)描述。描述。 基于这两个假定,基于这两个假定,Mooney从对称性出发,由纯粹的数学论从对称性出发,由纯粹的数学论证推导出橡胶材料的应变储能函数具有如下形式:证推导出橡胶材料
31、的应变储能函数具有如下形式: 对非线性弹性是一个对非线性弹性是一个(y )(y )突破,它使我们不需作任何关于应力应突破,它使我们不需作任何关于应力应变关系的假定而能得到非线性弹性的应力应变关系。当然这一理论变关系的假定而能得到非线性弹性的应力应变关系。当然这一理论比线弹性理论复杂得多。比线弹性理论复杂得多。)3111()3(23322122322211CCW第29页/共61页第三十页,共61页。v只有部分交联的聚合物在高于只有部分交联的聚合物在高于Tg时才会发生较大的时才会发生较大的弹性形变(可恢复的变形)。当然弹性形变(可恢复的变形)。当然(dngrn)交联不一交联不一定是指化学上的交联(
32、如橡胶的硫化),也包括大分子定是指化学上的交联(如橡胶的硫化),也包括大分子间由于其他原因而紧密地结合在一起的情况,如嵌段共间由于其他原因而紧密地结合在一起的情况,如嵌段共聚物在温度介于共聚物组成中两个聚合物的聚物在温度介于共聚物组成中两个聚合物的Tg之间时之间时 。v非线性弹性理论非线性弹性理论(lln)(lln)适用于橡胶材料,即部分交联的适用于橡胶材料,即部分交联的聚合物,其聚合物,其TgTg低于室温。双组分体系,溶胀的聚合物及由交低于室温。双组分体系,溶胀的聚合物及由交联的聚合物与其吸收的溶剂组成的体系也会产生较大的弹性联的聚合物与其吸收的溶剂组成的体系也会产生较大的弹性变形变形 。v
33、Mooney-Rivlin理论的局限性是它仅适用于平衡理论的局限性是它仅适用于平衡(pnghng)的的变形,即变形,即f或或必须是平衡必须是平衡(pnghng)态时的,不随时间变化态时的,不随时间变化 。非线性弹性理论的适用范围非线性弹性理论的适用范围 第30页/共61页第三十一页,共61页。橡胶橡胶(xingjio)(xingjio)弹性的统弹性的统计理论计理论 在橡胶弹性中,弹性力的产生主要是熵变化在橡胶弹性中,弹性力的产生主要是熵变化(binhu)的贡献,的贡献,也就是说,在形变也就是说,在形变(拉伸拉伸)过程中,聚合物分子被拉伸定向,由无规过程中,聚合物分子被拉伸定向,由无规线团的无序
34、结构变为伸展的链结构,即分于的构象发生变化线团的无序结构变为伸展的链结构,即分于的构象发生变化(binhu)、分子构象的几率由大变小,即熵减少,因此橡胶弹性、分子构象的几率由大变小,即熵减少,因此橡胶弹性也称为熵弹性。由于熵变远比内能变化也称为熵弹性。由于熵变远比内能变化(binhu)小,所以橡胶弹小,所以橡胶弹性体的模量比较小。性体的模量比较小。 对于理想高弹体来说,其弹性是熵弹性,形变时回缩力仅仅由对于理想高弹体来说,其弹性是熵弹性,形变时回缩力仅仅由体系体系(tx)(tx)内部熵的变化引起,因此有可能用统计方法计算体系内部熵的变化引起,因此有可能用统计方法计算体系(tx)(tx)熵的变化
35、,进而推导出宏观的应力应变关系熵的变化,进而推导出宏观的应力应变关系 。橡胶弹性的分子理论成功地解释了许多实验现象。但由于在推导过程橡胶弹性的分子理论成功地解释了许多实验现象。但由于在推导过程中作了许多假设,有些实验结果与理论结果并不一致。中作了许多假设,有些实验结果与理论结果并不一致。第31页/共61页第三十二页,共61页。 下图表示部分交联的高聚物,图中下图表示部分交联的高聚物,图中A A,B B,C C,DD等为交联点等为交联点,而在交联点之间的链段,而在交联点之间的链段BCBC,CHCH等,我们称之为网链(等,我们称之为网链(Network-Network-chainchain)。)。
36、在一般的硫化橡胶中,网链大约由在一般的硫化橡胶中,网链大约由5050到到100100个重复个重复(chngf)(chngf)链节链节组成,天然橡胶的分子大约由组成,天然橡胶的分子大约由1000100020002000个链节组成,因此一个个链节组成,因此一个分子中的网链数大约为分子中的网链数大约为10401040个,通常我们用单位体积聚合物中个,通常我们用单位体积聚合物中网链的数目来表示交联的程度,用网链的数目来表示交联的程度,用NiNi表示;此外也可以用网链的表示;此外也可以用网链的数均分子量数均分子量McMc表示交联程度。表示交联程度。 部分部分(b fen)(b fen)交联的聚合物交联的
37、聚合物 第32页/共61页第三十三页,共61页。非线性黏性(非牛顿流体)非线性黏性(非牛顿流体)1 1 聚合物熔体聚合物熔体(rn t)(rn t)流动特性流动特性 聚合物熔体的流动不是线性黏性流动,即它们是非聚合物熔体的流动不是线性黏性流动,即它们是非(shfi)(shfi)牛顿流体。牛顿流体。其流动特性是与聚合物的分子结构有关的。聚合物为长链分其流动特性是与聚合物的分子结构有关的。聚合物为长链分子,又互相发生缠绕。子,又互相发生缠绕。在不受应力时,分子链通常以无规线团的形式存在,而在受在不受应力时,分子链通常以无规线团的形式存在,而在受应力发生流动时,分子链受应力的作用发生定向,同时缠绕应
38、力发生流动时,分子链受应力的作用发生定向,同时缠绕逐步解体。逐步解体。这就产生了其黏度的剪切速率依赖性。由于有缠绕的存在,这就产生了其黏度的剪切速率依赖性。由于有缠绕的存在,聚合物熔体流动时还有弹性的表现。下面的几种特殊的流动聚合物熔体流动时还有弹性的表现。下面的几种特殊的流动行为都可以用聚合物的分子结构,即分子链的定向及缠绕来行为都可以用聚合物的分子结构,即分子链的定向及缠绕来解释解释 。第33页/共61页第三十四页,共61页。黏度黏度(nind)(nind)的剪切速率依赖性的剪切速率依赖性 牛顿流体的黏度在一定温度下是常数,与剪切速率无关,牛顿流体的黏度在一定温度下是常数,与剪切速率无关,
39、聚合物溶液和熔体的黏度则有很强的剪切速率依赖性。实验发聚合物溶液和熔体的黏度则有很强的剪切速率依赖性。实验发现现(fxin)(fxin),存在两种相反的剪切速率依赖性,存在两种相反的剪切速率依赖性 。非牛顿流体的流动非牛顿流体的流动(lidng)(lidng)特性特性 剪切速率剪切速率剪切应变剪切应变剪切应力剪切应力黏度黏度假塑性的曲线显示黏度随剪切速率假塑性的曲线显示黏度随剪切速率的增大而下降,这种性质称为假塑性或剪切的增大而下降,这种性质称为假塑性或剪切稀化。稀化。 第34页/共61页第三十五页,共61页。假塑性的曲线:黏度随剪切速率的增大而下降,这种性质称为假塑性假塑性的曲线:黏度随剪切
40、速率的增大而下降,这种性质称为假塑性(PseudoplasticPseudoplastic),或剪切稀化(),或剪切稀化(Shear-thinningShear-thinning)。这种剪切稀化)。这种剪切稀化现象是由于流体中的粒子发生定向、伸展、变形或分散等使流动阻力减现象是由于流体中的粒子发生定向、伸展、变形或分散等使流动阻力减少而造成的。剪切稀化现象是可逆的,即当剪切速率下降或消失时流体少而造成的。剪切稀化现象是可逆的,即当剪切速率下降或消失时流体的黏度就立即或仅有短时间的滞后即恢复的黏度就立即或仅有短时间的滞后即恢复(huf)(huf)至原来的黏度至原来的黏度 。 膨胀性的曲线:黏度随
41、剪切速率膨胀性的曲线:黏度随剪切速率(sl)(sl)的增大而上升,这种性的增大而上升,这种性质称为膨胀性(质称为膨胀性(DilatancyDilatancy),也称为剪切稠化(),也称为剪切稠化(Shear Shear thickeningthickening)。典型的膨胀性流体是)。典型的膨胀性流体是PVCPVC糊,其中增塑剂的加入糊,其中增塑剂的加入量较少,刚刚足够润滑所有固体表面,填充固体粒子之间的空隙量较少,刚刚足够润滑所有固体表面,填充固体粒子之间的空隙。当剪切速率。当剪切速率(sl)(sl)增加时,增塑剂来不及与固体粒子一起流动增加时,增塑剂来不及与固体粒子一起流动,不能完全填充固
42、体粒子间的空隙,造成体系的黏度上升。,不能完全填充固体粒子间的空隙,造成体系的黏度上升。 塑性的曲线:显示出一个屈服应力塑性的曲线:显示出一个屈服应力(yngl)(yngl)y y,当应力,当应力(yngl)(yngl)小于小于y y时,流体不流动,只发生切应变时,流体不流动,只发生切应变,应力,应力(yngl)(yngl)0 0。当。当应力应力(yngl)(yngl)y y后,流体才发生流动,显示出假塑性。后,流体才发生流动,显示出假塑性。 第35页/共61页第三十六页,共61页。黏度黏度(nind)(nind)的时间依赖性的时间依赖性 v触变(摇溶触变(摇溶(yo rn))流体:)流体:v
43、 恒定剪切速率下黏度随时间增加而降低的液体。恒定剪切速率下黏度随时间增加而降低的液体。v反触变(流凝)流体:反触变(流凝)流体:v 恒定剪切速率下黏度恒定剪切速率下黏度(nind)随时间增加而增加的液随时间增加而增加的液体。体。第36页/共61页第三十七页,共61页。 爬杆现象爬杆现象(xinxing)(xinxing)是非牛顿流体的弹性的表现之一,是非牛顿流体的弹性的表现之一,又称为韦森堡(又称为韦森堡(WeissenbergWeissenberg)效应(也有叫魏森贝格)如)效应(也有叫魏森贝格)如下图所示下图所示 离心力离心力法向应力法向应力离心力离心力“爬竿爬竿(p n)”现象现象 第3
44、7页/共61页第三十八页,共61页。离心力和法向应力离心力和法向应力 在旋转轴处和容器壁上的在旋转轴处和容器壁上的A A点和点和B B点处设置了压力传感器,结果发点处设置了压力传感器,结果发现现(fxin)(fxin)在甘油水溶液中在甘油水溶液中B B处的压力处的压力PBPB大于大于A A处的压力处的压力PAPA,而在加入,而在加入聚丙烯酰胺后则聚丙烯酰胺后则PAPBPAPB,说明前者主要是离心力在起作用,而后者则,说明前者主要是离心力在起作用,而后者则是法向应力起主要作用是法向应力起主要作用 爬杆现象解释爬杆现象解释(jish)(jish)实验实验第38页/共61页第三十九页,共61页。 聚
45、合物熔体经口模挤出后其断面膨胀,大于口模的断面,聚合物熔体经口模挤出后其断面膨胀,大于口模的断面,此种现象称为挤出膨胀或离模膨胀,这也是聚合物熔体在流此种现象称为挤出膨胀或离模膨胀,这也是聚合物熔体在流动时的弹性表现,即弹性记忆动时的弹性表现,即弹性记忆(jy)(jy)或弹性回复现象。法向或弹性回复现象。法向应力效应也是挤出膨胀的原因之一。大体有三种定性的解释应力效应也是挤出膨胀的原因之一。大体有三种定性的解释: 聚合物熔体流动期间处于高剪切场内,大分子在流动方向取向聚合物熔体流动期间处于高剪切场内,大分子在流动方向取向,而在口模处发生解取向,引起离模膨胀,即为取向效应所引起,而在口模处发生解
46、取向,引起离模膨胀,即为取向效应所引起的。的。但聚合物熔体由大截面的流道进入小直径但聚合物熔体由大截面的流道进入小直径(zhjng)口模时,产口模时,产生了弹性形变,在熔体被解除边界约束离开口模时,弹性变形获生了弹性形变,在熔体被解除边界约束离开口模时,弹性变形获得恢复,引起离模膨胀,即为弹性变形效应或称之为记忆效应。得恢复,引起离模膨胀,即为弹性变形效应或称之为记忆效应。由于黏弹性流体的剪切变形,在垂直剪切方向上存在正应力作由于黏弹性流体的剪切变形,在垂直剪切方向上存在正应力作用,引发离模膨胀,即称为正应力效应。用,引发离模膨胀,即称为正应力效应。第39页/共61页第四十页,共61页。流动流
47、动(lidng)(lidng)曲线的分析曲线的分析 典型典型(dinxng)(dinxng)的假塑性非牛顿流体的流动曲线的假塑性非牛顿流体的流动曲线 v 第一第一(dy)牛顿区牛顿区 :在很低剪切速率的范围,剪切应力与剪切速率接近与:在很低剪切速率的范围,剪切应力与剪切速率接近与成正比,即它遵循牛顿定律,成正比,即它遵循牛顿定律,0 v假塑区或剪切稀化区:非牛顿流体的黏度随剪切速率的增大而降低假塑区或剪切稀化区:非牛顿流体的黏度随剪切速率的增大而降低 v第二牛顿区第二牛顿区 :在更高的剪切速率范围,:在更高的剪切速率范围,非牛顿流体的黏度不再随剪切速率的增大非牛顿流体的黏度不再随剪切速率的增大
48、而降低,而是保持恒定,在图中表现为通过原点的直线,而降低,而是保持恒定,在图中表现为通过原点的直线, 第40页/共61页第四十一页,共61页。链缠结的观点解释链缠结的观点解释 三个区间的剪切三个区间的剪切应力、剪切速率和黏度应力、剪切速率和黏度(nind)(nind)的的关系关系第一牛顿区:第一牛顿区: 在较低剪切速率范围内,聚合物分子链虽受在较低剪切速率范围内,聚合物分子链虽受剪切速率的影响,分子链定向、伸展或解缠绕,但在布朗运动剪切速率的影响,分子链定向、伸展或解缠绕,但在布朗运动作用下,它仍有足够时间恢复作用下,它仍有足够时间恢复(huf)(huf)为无序状态,因此它的为无序状态,因此它
49、的黏度不随剪切速率变化黏度不随剪切速率变化 。假塑区或剪切稀化区:假塑区或剪切稀化区: 从分子的角度看,在该区从分子的角度看,在该区内剪切作用已超过内剪切作用已超过(chogu)(chogu)布朗运动的作用。分子布朗运动的作用。分子链发生定向、伸展并发生缠绕的逐步解体,而且已不链发生定向、伸展并发生缠绕的逐步解体,而且已不能恢复能恢复 。第二牛顿区:第二牛顿区: 当剪切速率达到当剪切速率达到定值后,分子链的缠绕已定值后,分子链的缠绕已完全解体,所以黏度不再下降完全解体,所以黏度不再下降 ,保持不变。,保持不变。第41页/共61页第四十二页,共61页。 线弹性线弹性(tnxng):(tnxng)
50、:适用于在低于玻璃化温度下的高聚物;适用于在低于玻璃化温度下的高聚物; 非线性弹性非线性弹性(tnxng):(tnxng):适用于高于适用于高于TgTg时的部分交联的高聚物时的部分交联的高聚物 或高弹态聚合物或高弹态聚合物; 线性及非线性黏性:适用于高聚物溶液及高聚物熔体线性及非线性黏性:适用于高聚物溶液及高聚物熔体 。实质实质(shzh)(shzh)上,高聚物的性状并不能用以上四种简单模式上,高聚物的性状并不能用以上四种简单模式来表示,原因:来表示,原因: 高聚物在应力作用下,可能同时表现出弹性和黏性;高聚物在应力作用下,可能同时表现出弹性和黏性; 高聚物在一般情况下,在恒定应力作用或一定应
51、变下,表现出应变的高聚物在一般情况下,在恒定应力作用或一定应变下,表现出应变的时时间依赖性或应力的时间依赖性间依赖性或应力的时间依赖性Time- dependent。对一般情况下的高聚物,用黏弹性(对一般情况下的高聚物,用黏弹性(Viscoelasticity)来表示:)来表示: 线性黏弹性;线性黏弹性; 非线性黏弹性非线性黏弹性 。 线性黏弹性线性黏弹性第42页/共61页第四十三页,共61页。线性黏弹性线性黏弹性(tnxng)(tnxng)的基本概念的基本概念 应变史(应变史(Strain historyStrain history):应变是随时间而变化的,用):应变是随时间而变化的,用(t
52、)(t)表示表示(biosh)(biosh); 应力史(应力史(Stress historyStress history):应力是随时间而变化的,用):应力是随时间而变化的,用(t)(t)表示表示(biosh)(biosh)。静态黏弹性静态黏弹性第43页/共61页第四十四页,共61页。各种材料各种材料(cilio)(cilio)有不同的响应,如图所示有不同的响应,如图所示 图图 蠕变蠕变(r bin)(r bin)实验实验 第44页/共61页第四十五页,共61页。 对线性弹性体,弹性应变是瞬时发生的,不随时间而变(图对线性弹性体,弹性应变是瞬时发生的,不随时间而变(图b)。即。即 (t)=0
53、t0 (t)=J 0 t0 线弹性固体在除去应力时也能立刻恢复又原有形状。弹性形变的特线弹性固体在除去应力时也能立刻恢复又原有形状。弹性形变的特点之一是变形时能储藏点之一是变形时能储藏(chcng)能量,而当应力除去后,能量又能量,而当应力除去后,能量又释放出来使形变消失释放出来使形变消失 :A. 线性弹性体线性弹性体第45页/共61页第四十六页,共61页。对线性黏性流体,有(图对线性黏性流体,有(图d):):(t)=0 t0(t)=0t/ t0线性黏性流体的应变是随时间以恒定线性黏性流体的应变是随时间以恒定(hngdng)的应变速度发展的,的应变速度发展的,而除去应力后应变即保持不变,称之为
54、发生了流动(图而除去应力后应变即保持不变,称之为发生了流动(图d),即能量),即能量是完全散失的是完全散失的 。B. 线性黏性流体线性黏性流体(lit)第46页/共61页第四十七页,共61页。C. 黏弹性黏弹性(tnxng)固体固体v 实际上,聚合物的响应是不同于以上两种理想实际上,聚合物的响应是不同于以上两种理想(lxing)(lxing)模式的:模式的: v 有的聚合物材料如部分交联的弹性体,表现出的性状如(图有的聚合物材料如部分交联的弹性体,表现出的性状如(图c c)所示,即应变随时)所示,即应变随时间逐渐增大,但并不是无限地在发展,而趋向于一个间逐渐增大,但并不是无限地在发展,而趋向于
55、一个(y )(y )定值,可称之为橡胶平定值,可称之为橡胶平台。如果时间台。如果时间t1t1瞬时除去应力瞬时除去应力0 0,可发现经过相当长的时间,该材料能完全恢复其,可发现经过相当长的时间,该材料能完全恢复其原有的形状(图原有的形状(图c c)。)。v 图图c所示的材料则既具有黏性,即应变随时间发展,又具有弹性,即应力所示的材料则既具有黏性,即应变随时间发展,又具有弹性,即应力除去后,应变逐渐减小,直至完全消失,即材料变形时没有发生黏性流动,除去后,应变逐渐减小,直至完全消失,即材料变形时没有发生黏性流动,所以称之为黏弹性固体。所以称之为黏弹性固体。第47页/共61页第四十八页,共61页。形
56、变是随时间发展的,而且不断发展,并趋向恒定的应变速形变是随时间发展的,而且不断发展,并趋向恒定的应变速度(与黏性流体类似)。这种材料在应力除去后,只能度(与黏性流体类似)。这种材料在应力除去后,只能(zh (zh nn)nn)部分恢复,留下永久变形(图部分恢复,留下永久变形(图e e),即这种材料在蠕变),即这种材料在蠕变时发生了黏性流动,所以称之为黏弹性液体。时发生了黏性流动,所以称之为黏弹性液体。 D. 黏弹性黏弹性(tnxng)液体液体第48页/共61页第四十九页,共61页。延长松弛时间与升高温度对材料延长松弛时间与升高温度对材料(cilio)的应力松弛具有相同的作用。的应力松弛具有相同
57、的作用。 根据时温等效原理,可得到在更长或更短时间根据时温等效原理,可得到在更长或更短时间内的数据内的数据(shj)。更长时间内的数据。更长时间内的数据(shj)可从可从较高温度时的数据较高温度时的数据(shj)得到,更短时间的数据得到,更短时间的数据(shj)则可从较低温度时的数据则可从较低温度时的数据(shj)得到得到 。时温等效时温等效(dn xio)原理原理 :第49页/共61页第五十页,共61页。高分子流体高分子流体(lit)在圆管中的流动在圆管中的流动幂律流体在长圆管中压力流动幂律流体在长圆管中压力流动高分子流体在毛细管流变仪、熔体指数测定仪、乌氏黏度计、圆高分子流体在毛细管流变仪
58、、熔体指数测定仪、乌氏黏度计、圆形挤出口形挤出口(ch ku)模中流动都属于这一类流动。模中流动都属于这一类流动。在多数情况下,高分子流体表现出稳定的层流流动并服从幂律定律在多数情况下,高分子流体表现出稳定的层流流动并服从幂律定律(dngl)。因此可以假定它们的流动符合以下特征:因此可以假定它们的流动符合以下特征:流体是不可压缩的;流动是充分发展的稳定流动;不考虑末流体是不可压缩的;流动是充分发展的稳定流动;不考虑末端效应;边界无滑移;忽略重力作用;在圆管中流动是对称端效应;边界无滑移;忽略重力作用;在圆管中流动是对称的;等温,忽略黏性耗散;与流动垂直的方向上无压力分布。的;等温,忽略黏性耗散
59、;与流动垂直的方向上无压力分布。第50页/共61页第五十一页,共61页。分子量对黏度的影响分子量对黏度的影响 分子量是影响高分子流变性的最重要的结构因素分子量是影响高分子流变性的最重要的结构因素。 因为在流动过程中,随着高分子的分子量的增加,因为在流动过程中,随着高分子的分子量的增加,分子链便会开始缠结,不能独立运动。此时的流动单分子链便会开始缠结,不能独立运动。此时的流动单元是链段而不是整个分子链。然而,这些链段必须元是链段而不是整个分子链。然而,这些链段必须(bx)同它们周围的其他链段同运动。同它们周围的其他链段同运动。“其他链段其他链段”可以是同一分子链的一部分,也可以与之缠结的另一可以
60、是同一分子链的一部分,也可以与之缠结的另一个分子链的一部分。个分子链的一部分。 一旦链长得足以产生缠结,流动就变得困难得多了一旦链长得足以产生缠结,流动就变得困难得多了,导致能量的耗散显著增加。一般把高分子出现缠结,导致能量的耗散显著增加。一般把高分子出现缠结所需的最低分子量定为临界(缠结)分子量(所需的最低分子量定为临界(缠结)分子量(Mc)。 高分子的分子量分布也影响其流体的流变性质。分高分子的分子量分布也影响其流体的流变性质。分子量相同但分子量分布不同的高分子流体的黏度随剪子量相同但分子量分布不同的高分子流体的黏度随剪切速率变化的幅度是不相同的。切速率变化的幅度是不相同的。第51页/共6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论