电路第五版课件 第九章正弦稳态电路分析_第1页
电路第五版课件 第九章正弦稳态电路分析_第2页
电路第五版课件 第九章正弦稳态电路分析_第3页
电路第五版课件 第九章正弦稳态电路分析_第4页
电路第五版课件 第九章正弦稳态电路分析_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022年5月16日星期一1第九章第九章 正弦稳态电路的分析正弦稳态电路的分析正弦稳态电路的分析正弦稳态电路的分析9.3正弦稳态电路的功率正弦稳态电路的功率9.4复功率复功率9.5最大功率传输最大功率传输9.6阻抗和导纳阻抗和导纳9.1电路的相量图电路的相量图9.22022年5月16日星期一22022年5月16日星期一21.定义定义 阻抗两端阻抗两端电压与电压与通过该阻抗通过该阻抗电流电流之间的之间的相位差相位差! .I无源线无源线性一端性一端口口 N0+ +- - .U设:设: .U = = Uf fu .I = = If fi则:则:Zdef .U .I= =UIf fu- -f fi=

2、= |Z|j jZ |Z| = = UI为为阻抗模阻抗模;j jz = =f fu- -f fi为为阻抗角阻抗角。具有阻碍电流的作用,单位是具有阻碍电流的作用,单位是 。正弦电源激励正弦电源激励 处于稳态处于稳态 Z+ +- - .U .IN09.1.1 阻抗阻抗 Z 9- -1 阻抗和导纳阻抗和导纳2022年5月16日星期一2.阻抗参数间的关系阻抗参数间的关系三角形式:三角形式:Z = =| Z |cosj jZ + + j| Z |sinj jZZ = = | Z |j jZ代数形式:代数形式:Z = = R + + j XZ的实部的实部R称为称为电阻电阻,Z的虚部的虚部X称为称为电抗电抗

3、。R = = |Z|cosj jZX = = |Z|sinj jZj jZ| Z |RX|Z|、R、X构成的直角构成的直角三三角形称为阻抗三角形。角形称为阻抗三角形。极坐标形式极坐标形式:|Z| = =R2 + + X2j jZ = = arctanRXZ+ +- - .U .IN02022年5月16日星期一4jXRZ+ += =ZZRj jcos| = =ZZXj jsin| = =IUZ= =阻抗表示式二阻抗表示式二iuZf ff fj j- -= =mmIUIUZ= = = |22|XRZ+ += =RXZarctan= =j j阻抗表示式一阻抗表示式一Z+ +- - .U .IN020

4、22年5月16日星期一53.单个元件的阻抗单个元件的阻抗 R+ +- - .U .IN0LN0+ +- - .U .ICN0+ +- - .U .I 表明:表明:Z 可以是实数,也可以是虚数。可以是实数,也可以是虚数。 Z = = .U .I= = RZ = = .U .I= = jw wL = = j XL1).纯电阻纯电阻2).纯电感纯电感XL= =w wL 称称感性电抗感性电抗, XL f3).纯电容纯电容Z = = .U .I= =jw wC1= =w wC1- -j= -= -j XCXC = =w wC1称称容性电抗容性电抗,XC (1/f )2022年5月16日星期一62022年

5、5月16日星期一64.RLC串联电路的阻抗串联电路的阻抗+ +- -+ +- -RL+ +- - uRuL uC+ +- - u iC+ +- -+ +- -Rjw wL+ +- - .UR .UL .UCjw wC1+ +- - .U .I相量模型:相量模型:电压、电流用相量;元件用复数阻抗或导纳。电压、电流用相量;元件用复数阻抗或导纳。 .U = = R .I+ + jw wL .I- - jw wC1 .I= = R + + jw wL- -w wC1 .Ij= = R + + j(XL- -XC) .I .I= (= (R + + jX) ) = = Z .Ij jZ= = w wL-

6、 -w wC1Z = = .I .U= = R + + j X= = |Z|X = = XL - - XCj jZ = = arctanRX2022年5月16日星期一72022年5月16日星期一+ +- -+ +- -Rjw wL+ +- - .UR .UL .UCjw wC1+ +- - .U .Ij jZ= = w wL- -w wC1Z = = .I .U= = R + + j X= = |Z|X = = XL - - XCj jZ = = arctanRX讨论:讨论: 对于对于 RLC 串联电路串联电路 X 0或或j jZ0,称称Z为感性;为感性; X0或或j jZ0,称称Z为容性;为

7、容性; X= =0或或j jZ = =0,Z为纯电阻性;为纯电阻性; R= =0,X0 ,Z为纯电感性;为纯电感性; R= =0,X0,Z为纯电容性。为纯电容性。 .U = = R .I+ + jw wL .I- - jw wC1 .I= = R + + jw wL- -w wC1 .Ij= = R + + j(XL- -XC) .I .I= (= (R + + jX) ) = = Z .I2022年5月16日星期一8+ +- -+ +- -Rjw wL+ +- - .UR .UL .UCjw wC1+ +- - .U .IZ = = .I .U= = R + + j X= = | Z |j

8、jZ= = w wL- -w wC1X = = XL - - XCj jZ = = arctanRX当当 w wL讨论:讨论:表现为表现为电压超前电流电压超前电流,Z 呈呈感感性性,称电路为感性电路。,称电路为感性电路。w wC1时,时,有有 X0 ,j jZ0以电流为参考相量的相量图以电流为参考相量的相量图 .I.UR.UC.UL .Uj jZ.UL+.UC.UX=UR2 + + (UL- -UC)2满足:满足:U 2 = =2022年5月16日星期一92022年5月16日星期一9Z = = .I .U= = R + + j X= = | Z |j jZ= = w wL- -w wC1X =

9、 = XL - - XCj jZ = = arctanRX当当 w wL表现为表现为电压滞后电流电压滞后电流,Z 呈呈容性容性,称电路为容性电路。,称电路为容性电路。w wC1时,时,有有 X0 ,j jZ0。 .I.UR.UC.UL .Uj jZ.UX+ +- -+ +- -Rjw wL+ +- - .UR .UL .UCjw wC1+ +- - .U .IUR2 + + (UL- -UC)2U 2 = =2022年5月16日星期一102022年5月16日星期一10Z = = .I .U= = R + + j X= = | Z |j jZ= = w wL- -w wC1X = = XL -

10、- XCj jZ = = arctanRX当当 w wL = =表现为表现为电压与电流同相电压与电流同相位位,电路发生了串联谐,电路发生了串联谐振,振,Z 呈纯电阻性呈纯电阻性。w wC1时,时,有有 X = = 0 ,j jZ = = 0。 .I.UR.UC.UL .U = = 注意:注意:从相量图可从相量图可以看出,在正弦以看出,在正弦交流交流 RLC串联电串联电路中,路中,会出现分会出现分电压大于总电压电压大于总电压的现象。的现象。+ +- -+ +- -Rjw wL+ +- - .UR .UL .UCjw wC1+ +- - .U .IU=UR2022年5月16日星期一112022年5

11、月16日星期一11Z = = .I .U= = R + + j X= = | Z |j jZ= = w wL- -w wC1X = = XL - - XCj jZ = = arctanRX当当R= =0,X 0时,时,Z 为纯电感性;为纯电感性;当当R= =0,X 0,则,则 B 0,即仍为感性。,即仍为感性。若若 Z 为容性,为容性,X 0,即仍为容性。,即仍为容性。R1, B X1Z= =R+ +jXY= =G+ +jBG 2022年5月16日星期一269- -2 电路的相量图电路的相量图 相量作为一个复数,可以用复平面上的有向线段来表示。相量作为一个复数,可以用复平面上的有向线段来表示。

12、按照大小和相位关系,用初始位置的有向线段画出的若干按照大小和相位关系,用初始位置的有向线段画出的若干个相量的图形,称为个相量的图形,称为相量图相量图。 因相量图能直观地反映各相量之间的关系,所以借助因相量图能直观地反映各相量之间的关系,所以借助于相量图对电路进行辅助分析和计算,有时能起到于相量图对电路进行辅助分析和计算,有时能起到“事半事半功倍功倍”的效果。的效果。在电路的相量图上要反映各相量之间的相对关系在电路的相量图上要反映各相量之间的相对关系:l各个相量的各个相量的模的相对关系模的相对关系(反映相对大小反映相对大小);l各个相量的各个相量的相位之间的相对关系相位之间的相对关系(反映相位差

13、反映相位差) 。(一一般作定性分析用般作定性分析用)2022年5月16日星期一271.相量图的绘制步骤相量图的绘制步骤(1)选一参考相量,通常是选一参考相量,通常是并联部并联部分的电压相量分的电压相量或或串联部分的电流相串联部分的电流相量量,习惯上习惯上把它画在水平方向。把它画在水平方向。(2)并联部分并联部分:由:由VCR确定并联支确定并联支路电流的相量路电流的相量由由KCL确定结点电确定结点电流相量;流相量; 串联部分串联部分,以电流相量为参考,以电流相量为参考由由VCR确定有关电压相量确定有关电压相量由由KVL确定回路上各电压相量。确定回路上各电压相量。从而确定各支路的电流相量与电从而确

14、定各支路的电流相量与电压相量之间的夹角。压相量之间的夹角。+ +- -+ +- -Rjw wL+ +- - .UR .UL .UCjw wC1+ +- - .U .I .I.UR.UC.UL .Uj jZ.UL+.UC2022年5月16日星期一282022年5月16日星期一282.相量图的绘制方法相量图的绘制方法(1)用用平行四边形法则平行四边形法则求解,使求解,使各相量都各相量都从原点向外辐射从原点向外辐射。 (2)用用平移求和法则平移求和法则求解求解,使,使各各相量相量(有关结点电流相量、回(有关结点电流相量、回路电压相量等)路电压相量等)构成若干个封构成若干个封闭的多边形闭的多边形。+

15、+- -+ +- -Rjw wL+ +- - .UR .UL .UCjw wC1+ +- - .U .I .I.UR.UC.UL .U.UL+.UC一般是根据需要,结合上述两一般是根据需要,结合上述两种方式,画成便于分析计算的种方式,画成便于分析计算的形状。绘制时应根据已知条件,形状。绘制时应根据已知条件,使图形大致符合比例。使图形大致符合比例。2022年5月16日星期一29用多边形求和法则用多边形求和法则1U2U3Uo1U2U3U123()UUU+21UU+与与顺序无关顺序无关3U1U123UUU+2U2022年5月16日星期一302022年5月16日星期一30解法解法1:用复数运算求解用复

16、数运算求解例例1:求:求: I、R、XC、XL 。I1=I2=10A .U 与与 .I 同相同相,+ +- - .I .Uab+ +- - .URjXL .I2 .I1abjXC100VV 0 = =ababUU设设因因I1= = I2则则R= = XCCCLjXRjXRjXZ-+=)(总阻抗总阻抗Z= = 0.5XC+ + j (XL - - 0.5XC)所以:所以:XL- - 0.5XC = = 0 .I1 = = j10 A, .I2 = = 10 A .I = = .I1+ + .I2= = (10+ +j10) A= = 14.14 45o A则则 |Z| = = UI由由得得 0.

17、5XC =100/14.14得得 XC = = R = =200 14.14 XL = 100 = 100 7.07 =0.5XC 2022年5月16日星期一31 .Uab .U .I .I1 .I2jXLI.jXLI.45o45o解法解法2:用相量图求解用相量图求解选选为参考相量,则为参考相量,则 .Uab+ +- - .I .Uab+ +- - .URjXL .I2 .I1abjXC100V10A10A21III+ += =LjIULw w = =CjUIw w = =ab1RUIab= =2abLUUU+ += =UL2022年5月16日星期一32由等腰三角形得:由等腰三角形得:XL =

18、 =I= = 7.07 R = =UabI2= = 14.14 XC = = R= = 14.14 若给定若给定w w,还能进,还能进 一步算出一步算出L和和C。= =14.14100Uab = =U = = 141.4V2I = = 14.14 A+ +- - .I .Uab+ +- - .URjXL .I2 .I1abjXC100V10A10A .Uab .U .I .I1 .I2jXLI .jXLI .45o由相量图得:由相量图得:2022年5月16日星期一339- -3 正弦稳态电路的分析正弦稳态电路的分析 本节的核心内容:将电阻电路的各种分析方本节的核心内容:将电阻电路的各种分析方法

19、,推广到正弦稳态电路中。法,推广到正弦稳态电路中。 电阻电路中的很多方法和定理,都以两类约束电阻电路中的很多方法和定理,都以两类约束 (KCL、KVL和和 VCR)为基础。在引入相量和复为基础。在引入相量和复阻抗的概念以后,两类约束的相量表达式与时阻抗的概念以后,两类约束的相量表达式与时域表达式具有相同的形式:域表达式具有相同的形式:KCLi = = 0I = = 0.KVLu = = 0VCRu = = RiU = = 0.U = = Z I.2022年5月16日星期一34 推广推广应用应用时作如下变换:时作如下变换: 以两类约束为基础的各种计算方法和定理必以两类约束为基础的各种计算方法和定

20、理必然也具有相同的形式。然也具有相同的形式。所以,所以,引入阻抗以后,引入阻抗以后,可将电阻电路中讨论的所有网络定理和分析方可将电阻电路中讨论的所有网络定理和分析方法都推广应用于正弦稳态的相量分析中。法都推广应用于正弦稳态的相量分析中。直流直流 (f = =0)是一个特例。是一个特例。 例如:例如:Req的定义与的定义与求法,可以推广成求法,可以推广成 Zeq的定义与求法。的定义与求法。i .Iu .UR、L、CZGY电阻电路电阻电路 正弦稳态电路正弦稳态电路2022年5月16日星期一35解:用观察法列结点解:用观察法列结点电压方程电压方程(Y1+ +Y2+ +Y3) .Un1- - Y3 .

21、Un2= = Y1 .US1+ + Y3 .US3- - Y3 .Un1+ + (Y3+ +Y4) .Un2= = - -Y3 .US3 .+ + IS5用观察法列回路电流方程用观察法列回路电流方程L1(Z1+ +Z2) .Il1- -Z2 .Il2 .US1例例1:独立源均为同频:独立源均为同频率正弦量。试列出该率正弦量。试列出该电路的电路的结点电压方程结点电压方程和和回路电流方程回路电流方程。= =L2- -Z2 .Il1+ + (Z2+ +Z3 + +Z4) .Il2 - -Z4 .Il3 = = .- -US3L3 .Il3 = = .- - IS5+ +- - .IS5 .US1Z1

22、 .US3+ +- -Z2Z3Z4Z5 .Il1 .Il2 .Il32022年5月16日星期一36例例2:独立源均为同频率正弦:独立源均为同频率正弦量。试列出该电路的结点电量。试列出该电路的结点电压方程和回路电流方程。压方程和回路电流方程。用结点电压表示控制量:用结点电压表示控制量: .Un1 = = .US2+ + (Y3+ +Y4+ +Y5) .Un3- -Y3 .Un1- -Y5 .Un4= = - -Y3 .US3+ + (Y1+ +Y5) .Un4- -Y1 .Un1- -Y5 .Un3= = b b . I3 . I3 = = .Un1- - .Un3- - .US3 Z3= =

23、Y3解:解:选参考结点时,尽量把选参考结点时,尽量把无伴电压源选为结点电压无伴电压源选为结点电压。 .Un1- - .Un3- - .US3()( .US3+ +- -Z3 .I3+ +- - .US2b b .I3Z1Z4Z52022年5月16日星期一37列回路电流方程:列回路电流方程:用回路电流表示控制量:用回路电流表示控制量: .US3+ +- -Z3 .I3+ +- - .US2b b .I3Z1Z4Z5 .US2选选回路如图所示回路如图所示。 .Il1 .Il2 .Il3 .Il1 = b= b . I3 + + (Z1+ +Z4+ +Z5) .Il2 Z1 .Il1 - -Z4 .

24、Il3 = -= - -Z4 .Il2 + + (Z3+ +Z4) .Il3 = = .US2- - .US3 . I3= = .Il3 列回路电流方程如下:列回路电流方程如下:= b= b .Il3 L1L2L3ao .US1+ +- -Z1Z2 .I2 .IS3+ +- - .rI211 .U+ +- - .I38例例3:求戴维宁等效电路。:求戴维宁等效电路。 解解:(1)求开路电压求开路电压 .Uoc= = - -r . I2+ . I2Z2 .Uoc= = - -r . I2+ . . (I2+ IS3)Z1 .US1- - .Uoc = =(Z2- -r) .(US1 . - - I

25、S3 Z1)Z1 + + Z2 (2)求等效阻抗求等效阻抗 . I2 = =Z1+ +Z2Z1 . IZeq = = . U . I= =Z2- -r1+ +Y1Z2 . U = = - -r . I2+ + Z2 . I2ao .US1+ +- -Z1Z2 .I2 .IS3+ +- - .rI211 .Uoc+ +- - .Uoc+ +- -Zeq112022年5月16日星期一392022年5月16日星期一39例例4:US = =380V, f = =50Hz,C为可变电容,当为可变电容,当C= =80.95m mF时,表时,表A读数最小为读数最小为2.59A。求:表。求:表A1的读数。的读

26、数。解法解法1:借助相量图求解:借助相量图求解选选 .USIC = = 2p pfCUS= = 9.66A .I = = .I1+ + .IC调调C,IC变。但:变。但: .I1 不变,不变, .IC 始终与始终与 .US 正交。正交。 .US .I1 .I .I .US9.662+ + 2.592= = 10 AR1 .Ijw wC1+ +- - .USjw wL1 .I1 .ICAA1为参考相量为参考相量始终构成封闭三角形。始终构成封闭三角形。当当与与同相时最小。同相时最小。 .IC .US .I1 .IC .I .US .I1 .IC .II1 = =2022年5月16日星期一40解法解

27、法2:Y = = jw wC+ +|Z1|2R1- - j|Z1|2w wL1例例4:US = =380V, f = =50Hz,C为可变电容,当为可变电容,当C= =80.95m mF时,表时,表A读数最小为读数最小为2.59A。求:表。求:表A1的读数。的读数。 调调C,只改变只改变ImY。当当ImY = =0时,时,| Y |最小,最小,I = = | Y |US电路呈纯电阻性,电路呈纯电阻性, .US 与与 .I 同相。同相。设设 .US = = 380 0oV则则 .I = = 2.590oA .IC = = jw wC= = j9.66A .US .I1= = .I - - .IC

28、 = = 2.59 - - j9.66= = 10 - -70o A表表A1的读数为的读数为10 A。R1 .Ijw wC1+ +- - .USjw wL1 .I1 .ICAA1也也最小。最小。电路的输入导纳为电路的输入导纳为2022年5月16日星期一41实践中,可以用这种电路测实践中,可以用这种电路测量一个电感线圈的参数。量一个电感线圈的参数。由以上由以上(测得的测得的)数据算出数据算出电感线圈电感线圈R1= =13 ,L1= = = 113.7mH35.71w w例例4:US = =380V, f = =50Hz,C为可变电容,当为可变电容,当C= =80.95m mF时,表时,表A读数最

29、小为读数最小为2.59A。求:表。求:表A1的读数。的读数。 .I1= = 10 - -70o AZ1 = = .US .I1 = = 3870o= = 13 + + j 35.71 R1 .Ijw wC1+ +- - .USjw wL1 .I1 .ICAA12022年5月16日星期一42 .U1例例5:P228例例9- -5。已知。已知 cos(314t+60+60o o) V2uS= = 200A的读数为的读数为2A,V1、V2的的读数均为读数均为200V,求,求R、L、C、 u2 、 uR ,并作出该,并作出该电路的相量图。电路的相量图。解解: .I = = 2 0o A .I .U2

30、.UR .UL .US60o30o30o .U2 = = - -j 200 V .U1 = = 200 30o V, .US = = 200- -30o V定性绘出相量图。定性绘出相量图。由相量图得:由相量图得:2A200V200VR+ +- -LAV1uSV2Ci(1)求求R、L、C设设 .U1等边三角形等边三角形2022年5月16日星期一43 .I .U2 .UR .UL .U1 .U1 .US60o30o30o .I = = 2 0o A .U2 = = - -j 200 V .U1 = = 200 30o V, .US = = 200 - -30o V。Z1= =R+ +jw wL=

31、= .I .U1= =200 30o2 0o= =10030o= =86.6+ +j50 R= =86.6 ,w wL= =50 L= =31450= = 0.159HZC= = .I .U2= =- -j2002= -= -j100 = -= -jw wC1C = =100w w1= = 31.85 m mFR+ +- -LAV1uSV2Ci2022年5月16日星期一44(2)求求u2、uR2A200V200VR+ +- -LAV1uSV2CiV 314cos22002tu = =将以电流为参考相量的将以电流为参考相量的相量图相量图逆时针旋转逆时针旋转90o:V 2 .1736 .862=

32、= = = = IRUR cos(314t+ +60o o) V2uS= = 200已知已知 .I .U2 .UR .UL .U1 .U1 .US60o30o30o .I .U2 .UR .UL .U1 .U1 .US60o30o30oV )90314cos(2173 + += =tuRus的初相为的初相为60o2022年5月16日星期一45例例6画出电路的相量模型画出电路的相量模型31111( j)1000 ( j318.47)318.47 109011000j318.471049.517.7jRCZRCww- -=-121000,10,500mH,10F,100V,314rad/s,RRL

33、CUw=求求: :各支路电流。各支路电流。已知:已知:解解R2+_Li1i2i3R1CuZ1Z2U1I2I3I1jCw-jLwR2+_R12022年5月16日星期一4622j10j157ZRLw=+=+12 92.11j289.13 10j157 102.11j132.13 166.9952.3ZZZ=+=-+=-=-1303.4572.392.11289.13Zj= -=-Z1Z2U1I2I3I1jCw-jLwR2+_R12022年5月16日星期一471100 00.6 52.3 A166.9952.3UIZ=-2111jj318.470.6 52.311049.517.7j 0.18120

34、 ACIIRCww-=-=-13111j1000 0.6 52.30.57 70 A1049.517.7RIIRCw=-=-Z1Z2U1I2I3I1jCw-jLwR2+_R12022年5月16日星期一482022年5月16日星期一48设设电压与电流的相位差电压与电流的相位差j j = = f fu - -f fip = = u i只含无只含无源元件源元件的一端的一端口口 (N)+ +- -uiu = = U cosw wt 2i = = I cos(w wt- -j j)2j jw wtou ,i iuUcosw wt2 I cos(w wt- -j j)2=1. 瞬时功率瞬时功率p9.4.1

35、 功率的概念功率的概念因因 u、i采用关联的参采用关联的参考方向,故一端口吸考方向,故一端口吸收的瞬时功率为:收的瞬时功率为:9- -4 正弦稳态电路的功率正弦稳态电路的功率2022年5月16日星期一49第第1项为恒定量项为恒定量 ;第第2项仍为正弦量,但频率项仍为正弦量,但频率是电压或电流的两倍。是电压或电流的两倍。第一种分解方法:第一种分解方法:p = = UIcosj j+ + UIcos(2w wt- -j j)UI cosj jw wt ou ,i , piu pUIcos(2w wt- -j j)第二种分解方法:第二种分解方法:p = =UIcosj j (1+(1+cos2w w

36、t) )+ +UIsinj j sin2w wt第第1项始终项始终0为不可逆部分为不可逆部分 ;第第2项为两倍电压或电流频项为两倍电压或电流频率的正弦量,是瞬时功率的率的正弦量,是瞬时功率的可逆部分。可逆部分。w w tOUIsinj j sin2w w tUIcosj j (1+cos2w w t)2022年5月16日星期一50不可逆部分是一端口内部所有电阻不可逆部分是一端口内部所有电阻消耗的功率。消耗的功率。p = =UIcosj j (1+ (1+ cos2w wt) )+ + UIsinj j sin2w wtp0,表示电路吸收功率,表示电路吸收功率,不可逆部分不可逆部分可逆部分可逆部

37、分 可逆部分正负交替,说明一口可逆部分正负交替,说明一口与电源之间有与电源之间有能量交换能量交换情况。情况。p0,表示电路发出功率。,表示电路发出功率。 因为没有必要研究电路中每时每刻的功率因为没有必要研究电路中每时每刻的功率情况,而且瞬时功率也不便于测量。所以情况,而且瞬时功率也不便于测量。所以瞬时功率的实际意义不大。瞬时功率的实际意义不大。只含无只含无源元件源元件的一端的一端口口 (N)+ +- -ui2022年5月16日星期一512.有功功率有功功率P 和和 功率因数功率因数cosj j (或用或用l l表示表示) ) 为便于测量,通常采用为便于测量,通常采用平均功率平均功率 P的的概念

38、。概念。P为瞬时功率在一个周期内的为瞬时功率在一个周期内的平均值,即:平均值,即:P = =T10Tp dt只含无只含无源元件源元件的一端的一端口口 (N)+ +- -ui= =T10TUIcosj j + + UIcos(2w wt+ +j j) dt积分结果:积分结果:P = = UIcosj j j j =f fu - -f fi:称为称为功率因数角。对无源网络,功率因数角。对无源网络,为为其其 等效阻抗的等效阻抗的阻抗角阻抗角。 cosj j :称为功率因数。称为功率因数。P 的单位:的单位:W、kW等。等。2022年5月16日星期一522022年5月16日星期一52一般有一般有 0|

39、cosj j | 1 cosj j = =1,一端口的等效阻抗为一端口的等效阻抗为纯电阻纯电阻; cosj j = =0,一端口的等效阻抗为一端口的等效阻抗为纯电抗。纯电抗。只含无只含无源元件源元件的一端的一端口口 (N)+ +- -ui 平均功率实际上是平均功率实际上是电阻消耗的功率电阻消耗的功率,亦称为,亦称为有功功率有功功率。表示电路实际消耗的功率,它不仅与电压电流有效值表示电路实际消耗的功率,它不仅与电压电流有效值有关,而且与有关,而且与 cosj j 有关,这是交流与直流的很大区别,有关,这是交流与直流的很大区别,主要是由于主要是由于电压、电流存在相位差电压、电流存在相位差。P =

40、= UIcosj j 纯电阻电路:纯电阻电路:纯电感电路:纯电感电路:纯电容电路:纯电容电路:UIP = = = =,0j j0,90= = = =Pj j0,90= = - -= =Pj jR总是耗能,总是耗能,L和和C是不耗能的。是不耗能的。 2022年5月16日星期一533. 无功功率无功功率Q Q并非一端口实际消耗的并非一端口实际消耗的功率,称无功功率。功率,称无功功率。 为便于区分,为便于区分,Q的单位的单位用用Var(乏乏)。QdefU I sinj jSdefU I 无源无源一端一端口口N0+ +- -ui有源有源一端一端口口NS4. 视在功率视在功率 S 视在功率反映含源视在功

41、率反映含源一端口的做功能力。一端口的做功能力。 发电机、变压器等许发电机、变压器等许多电力设备的容量就多电力设备的容量就用用S表示。表示。S的单位是的单位是VA(伏安伏安)。 Q的大小反映网络与外的大小反映网络与外电路交换功率电路交换功率(或者说是或者说是能量能量)的规模,是由储能的规模,是由储能元件元件L、C的性质决定的。的性质决定的。2022年5月16日星期一S、P、Q、j j 之间的关系之间的关系功率三角形功率三角形S2=P2 + Q2j j = = arctanPQSPQRX|Z|UURUX有功功率有功功率: P=UIcosj j 单位单位:W无功功率无功功率: Q=UIsinj j

42、单位:单位:Var视在功率视在功率: S=UI 单位单位:VA9.4.2 功率的关系功率的关系阻抗三角形阻抗三角形电压三角形电压三角形j j2022年5月16日星期一551.单一单一R、L、C元件的功率计算元件的功率计算(1) R :u与与i 同相,同相,j j = =0QR= =UIsinj j = = 0i = = I cosw wt2u = = U cosw wt2w wtou ,i , piup= =ui= =UI(1+ +cos2w wt)0 总有总有 p0,说明说明R一一直在吸收功率。直在吸收功率。PR= =UIcosj j= =UI = = I2R= =U2 GUIR+ +- -

43、ui9.4.3 功率的分析计算功率的分析计算2022年5月16日星期一56(2) L:u 超前超前 i 90o , 即即j j = =90ow wtou , i , pQ= =UIu = = U cosw wt2i = = I cos(w wt- -90o) )2p= =ui= = UIsin2w wtP = =UIcosj j = = 0,不耗能。,不耗能。 p交替变化交替变化,说明说明L对外对外有能量交换,其规模为:有能量交换,其规模为: L+ +- -uiQL= =UIsin90o = =UI= = w wLI I= =w wLU2= = I2w wL工程上认为,工程上认为,L“吸收吸收

44、”无功功率。无功功率。 放放 吸吸 放放吸吸= = I2XL2022年5月16日星期一57(3) C:u 滞后滞后i 90o,即,即j j = - = -90o= = - -= = - -U2w wCu = = U cosw wt2i = = I cos(w wt+ +90o o) )2p= =ui= -= -UIsin2w wtP = =UIcosj j = = 0,不耗能。,不耗能。 p交替变化交替变化,说明说明C对外对外有能量交换,其规模为:有能量交换,其规模为: QC = =UIsin(- -90o) = -= -UIw wC1I2工程上认为,工程上认为,C “放出放出”无功功率无功功

45、率(以示与以示与L的区别的区别)。 C+ +- -uiw wtou , i , p放放 吸吸 放放 吸吸Q=-=-UI= = I2XC2022年5月16日星期一582.任意阻抗的功率计算任意阻抗的功率计算PZ = =UIcosj j = =I2|Z|cosj j = = I2RQZ = =UIsinj j = =I2|Z| sinj j = =I2XZ+ +- -ui= =I2(XL- -XC)= =QL- -QCS = =P2 + + Q2 = = I2R2 + + X2 = = I2|Z|L、C 的无功具有互相补偿的作用。的无功具有互相补偿的作用。2022年5月16日星期一592022年5

46、月16日星期一59电压、电流的有功分量和无功分量电压、电流的有功分量和无功分量+ +- -I.U.XR+ +- - + +- -UR.UX.以感性负载为例以感性负载为例I.UR.UX.U.j jP= =UIcosj j = = UR IQ= =UIsinj j = = UX I称称UR为为 U 的有功分量。的有功分量。.称称UX为为 U 的无功分量。的无功分量。.IB.I.U.j j+ +- -I.U.BGIG.IB.IG.P= =UIcosj j = = U IGQ= =UIsinj j = = U IB称称 IG为为 I 的有功分量。的有功分量。.称称 IB为为 I 的无功分量。的无功分量

47、。.2022年5月16日星期一60例题:三表法例题:三表法测线圈参测线圈参数的电路如图。根据测数的电路如图。根据测出的数据求出的数据求 R、L。 解法解法1:w wL = =502 - - 302= = 40 L = =w w40= =31440= = 127mH 由由P= = I2R = =30 W R= =30 电感线圈的阻抗电感线圈的阻抗(模模):|Z|= =UI= = 50 R2 + + X2|Z|= =UI=WAV*+ +- - .US .I50V1A30Wf= =50HzRL2022年5月16日星期一61P = = UI cosj j = =30 Wcosj j = =PUI= =

48、0.6j j = = 53.1oZ = =5053.1o= =30+ +j40 得得 R= =30 ,w wL= = 40 。 例题:三表法例题:三表法测线圈参测线圈参数的电路如图。根据测数的电路如图。根据测出的数据求出的数据求 R、L。 解法解法2:|Z|= =UI= = 50 解法解法3:P、Q与与R、L关系关系S= = UI = =501 1 = = 50VAQ = = S2 - - P2 = =502 - - 302= = 40 Var 由由 P= =I2R= =30WR= =30 Q= =I2XL得得 XL = = w wL= = 40 。 = = R + + j XZ = = |

49、Z |j jZWAV*+ +- - .US .I50V1A30Wf= =50HzRL= = 40W2022年5月16日星期一622022年5月16日星期一629.4.4 功率因数的提高功率因数的提高1.提高功率因数的意义提高功率因数的意义(1)设备不能充分利用,若电流设备不能充分利用,若电流为额定值,则为额定值,则 S100kVA+ +- -UI.ZL负载负载P = =UIcosj j = = Scosj jcosj j = =1,P = =S = =100kWcosj j = =0.6, P = =0.6S = =60kW 设备容量设备容量 S (额定额定)向负载送多少有向负载送多少有功要由

50、负载的阻抗角决定。功要由负载的阻抗角决定。异步电动机异步电动机 空载空载 cosj j = = 0.20.3日光灯日光灯 cosj j = = 0.450.6一般用户:一般用户:满载满载 cosj j = = 0.70.852022年5月16日星期一632022年5月16日星期一63P= =UIcosj j 一定时一定时(2)当输出相同的有功功率时,当输出相同的有功功率时,I= =P/(Ucosj j),线路,线路上电流大,损耗大,线路压降大。上电流大,损耗大,线路压降大。I.+ +- -U.ZU、cosj j I2.提高功率因数的方法提高功率因数的方法(1)高压传输;高压传输;(2)改进自身

51、设备改进自身设备;(3)感性负载两端感性负载两端并联电容并联电容,提高功率因数提高功率因数。2022年5月16日星期一64并联电容器并联电容器V0 = = UU提高功率因数的方法提高功率因数的方法-设原电路的功率因数为设原电路的功率因数为 ,提高后的功率因数为,提高后的功率因数为。 U、P 为已知,为已知,分析分析: (1)并电容器为什么能提高并电容器为什么能提高功率因数?功率因数? (2)并联多大电容并联多大电容C? .U.I1 .I.ICRjw wLjw wC1+ +- - .I .U .I1 .IC分析:分析:借助相量图借助相量图 并联并联 C 后,电感性负载的电后,电感性负载的电压和电

52、流不变,吸收的有功压和电流不变,吸收的有功功率和无功功率不变,即:功率和无功功率不变,即:负载的工作状态不变。负载的工作状态不变。j jj jcosI2022年5月16日星期一65(2)并联多大电容并联多大电容C?(U、P 为已知)为已知) .U.I1 .I.ICRjw wLjw wC1+ +- - .I .U .I1 .ICIC = =w wCU 代入上式并整理得代入上式并整理得I1= = PUcosj j1I = = PUcosj jC = = w wU2 P(tanj j1 - - tanj j) )IC = =? I1sinj j1 - - Isinj j负载的负载的有功功率不变,则有

53、功功率不变,则2022年5月16日星期一669- -5 复功率复功率 为了用电压相量和电流相量计算为了用电压相量和电流相量计算功率,引入功率,引入“复功率复功率”。1. 定义:定义: .U= =Uf fu .I = = If fi,则:则:del .U .I*= = UIf fu- -f fi= = Sj j P、Q、S三者之间的关系可以通过三者之间的关系可以通过“复功率复功率”表述。表述。实部是平均功率实部是平均功率;虚部是无功功率虚部是无功功率;模是视在功率;辐角是功率因数角。模是视在功率;辐角是功率因数角。S设一端口的设一端口的= =UIcosj j + + jUIsinj j = =

54、P+ +jQ负负载载+ +- -UI.2022年5月16日星期一672. 复功率的其它表示形式复功率的其它表示形式 只用于辅助计算功率。只用于辅助计算功率。 .U .I* .I ) .I* = (= (Z = (= (R + + jX) ) I2 = = RI2 + + jXI2 = = ZI2P + + jQ或或 .U .I* S = =S= =复功率满足守恒定理:在正弦稳态下,任一电路复功率满足守恒定理:在正弦稳态下,任一电路 .U= =( (Y .U )* = = Y*U2S 是复数,而不是相量,它不对应某个正弦量;是复数,而不是相量,它不对应某个正弦量; 注意注意 的所有支路吸收的复功

55、率之和为零:的所有支路吸收的复功率之和为零:P = = 0,Q = = 0 S = = 0视在功率不守恒视在功率不守恒。因因UU1+U2,故,故SS1+S2。2022年5月16日星期一68 A)3 .105(77. 815j525j1015j5010 oo1- - = =- -+ + +- - = =I A5 .3494.14 o12 = =- -= =IIISVA 1923j769)25j10(77. 8 21211+ += =+ + = = =ZIS吸吸VA 3348j1116)15j5(94.14 22222- -= =- - = = =ZIS吸吸VA 1423j1885 )25j10)

56、(3 .105(77. 810 o*11- -= =+ +- - = = = =SIZIS发发解解:方法方法1VA 1923j769)25j10(77. 8 21211+ += =+ + = = =ZIS吸吸VA 3348j1116)15j5(94.14 22222- -= =- - = = =ZIS吸吸= .U1 .IS*S+_U100o A10 j25 5 - -j15 1I2I例例:电路如图,求各支路的复功率。电路如图,求各支路的复功率。2022年5月16日星期一69例例:电路如图,求各支路的复功率。电路如图,求各支路的复功率。V )1 .37(236 010 oo- - = = = =

57、ZU 解解:方法方法2)15j5/()2510(- -+ += =jZVA 1424j1882010)1 .37(236 oo- -= = - - = =发发SVA 1920j768)25101(236 *2*121+ += =+ += = =jYUS吸吸VA 3345j1113 *222- -= = =YUS吸吸发发吸吸吸吸SSS= =+ +21 = .U .IS*SS1 = =Y1*U2S2 = =Y2*U2 .U = = Z .IS +_U100o A10 j25 5 - -j15 1I2I2022年5月16日星期一702022年5月16日星期一70解法解法1:借助相量图借助相量图IC

58、= =w wCU 代入上式并整理得代入上式并整理得I1= = P1Ucosj j1I = = P1Ucosj jC = = w wU2 P1(tanj j1 - - tanj j) )IC = = I1sinj j1 - - Isinj j将将Rjw wLjw wC1+ +- - .I .U .I1 .ICP239 例例9- -10 :已知:已知 U= =380V,f = =50Hz,cosj j1= =0.6,P1= =20kW欲使欲使cosj j = =0.9,求补偿电容,求补偿电容C。 .U.I1 .I.IC= = 374.49 m mF2022年5月16日星期一712022年5月16日

59、星期一71解法解法2:由由功率求解功率求解RL支路的复功率为支路的复功率为 S1= =P1+ + jQ1C的复功率为的复功率为SC = = 0 + + jQC= = P1+ + j(Q1+ + QC)则则 S = = S1+ + SC因此补偿后总无功功率因此补偿后总无功功率 Q = = Q1+ + QCC = =QC- -w wU2其中其中Q= = Ptanj jj jSQPQ1= = Ptanj j1则则QC= = Q- - Q1 = P1tanj jZ- - P1tanj jZ1= = 26.67 kvar= =9.69 kvar= = 374.49 m mF= -= -16.98 kva

60、rRjw wLjw wC1+ +- - .I .U .I1 .IC2022年5月16日星期一72从功率的角度看从功率的角度看 并联电容后,电源向负载输送并联电容后,电源向负载输送的有功功率的有功功率UI1 cosj j1 = =UIcosj j不不变,但是电源向负载输送的无功变,但是电源向负载输送的无功UIsinj jUI1 sinj j1减少了,减少减少了,减少的这部分无功由电容的这部分无功由电容“产生产生”来来补偿,使感性负载吸收的无功不补偿,使感性负载吸收的无功不变,而功率因数得到改善。变,而功率因数得到改善。补偿前:补偿前: Q = = Q1= = 26.67 kvar 补偿后:补偿后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论