《医药数理统计方法》练习册学习指导 2_第1页
《医药数理统计方法》练习册学习指导 2_第2页
《医药数理统计方法》练习册学习指导 2_第3页
《医药数理统计方法》练习册学习指导 2_第4页
《医药数理统计方法》练习册学习指导 2_第5页
已阅读5页,还剩120页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、10452班专用第一章 数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2. 掌握定性和定量数据的整理步骤、显示方法;3. 掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4. 能理解并熟练掌握样本均值、样本方差的计算;5. 了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。二、 内容提要(一) 数据的分类数据类型定性数据(品质数据)定量数据定类数据(计数数据)定序数据(等级数据)数值数据(计量数据)表现形式类别(无序)类别(有序)数值()对应变量定类变量定序变量数值变量(离散变量、连续变量)主要统计方法计

2、算各组频数,进行列联表分析、c2检验等非参数方法计算各种统计量,进行参数估计和检验、回归分析、方差分析等参数方法常用统计图形条形图,圆形图(饼图)直方图,折线图,散点图,茎叶图,箱形图(二) 常用统计量1、描述集中趋势的统计量名 称公 式(原始数据)公 式(分组数据)意 义均值反映数据取值的平均水平,是描述数据分布集中趋势的最主要测度值, 中位数Me中位数所在组:累积频数超过n/2的那个最低组是典型的位置平均数,不受极端值的影响众数Mo数据中出现次数最多的观察值众数所在组:频数最大的组测度定性数据集中趋势,对于定量数据意义不大2、描述离散程度的统计量名 称公 式(原始数据)公 式(分组数据)意

3、 义极差RR = 最大值-最小值R最高组上限值最低组下限值反映离散程度的最简单测度值,不能反映中间数据的离散性总体方差s2反映每个总体数据偏离其总体均值的平均程度,是离散程度的最重要测度值, 其中标准差具有与观察值数据相同的量纲总体标准差s样本方差S2反映每个样本数据偏离其样本均值的平均程度,是离散程度的最重要测度值, 其中标准差具有与观察值数据相同的量纲样本标准差S变异系数CVCV=反映数据偏离其均值的相对偏差,是无量纲的相对变异性测度样本标准误反映样本均值偏离总体均值的平均程度,在用样本均值估计总体均值时测度偏差3、描述分布形状的统计量名 称公 式(原始数据)公 式(分组数据)意 义偏度S

4、k反映数据分布的非对称性Sk=0时为对称;Sk 0时为正偏或右偏;Sk 0)乘法公式若P(A)0, P(AB)=P(A)P(B|A) 若P(B)0, P(AB)=P(B)P(A|B)当P(A1A2An-1)0时,有P(A1A2An)=P(A1)P(A2|A1)P(A3|A1A2) P(An|A1A2An-1)独立事件公式A、B相互独立:P(AB)=P(A)P(B)A1, A2, , An相互独立:P(A1A2An)= P(A1)P(A2)P(An)全概率公式若A1, A2, , An为完备事件组*,对事件B逆概率公式(贝叶斯公式)若A1, A2, , An为完备事件组*,P(B)0*完备事件组

5、A1, A2, , An1. A1, A2, , An互不相容且P(Ai)0(i=1, 2, , n);2. A1+A2+An= W三、综合例题解析例1 从某鱼池中取100条鱼,做上记号后再放入该鱼池中。现从该池中任意捉来50条鱼,发现其中有两条有记号,问池内大约有多少条鱼?解:设池内大约有n条鱼,令A=从池中捉到有记号鱼则从池中捉到有记号鱼的概率P(A)=由统计概率的定义知,它近似于捉到有记号鱼的频率fn (A) =,即解之得n=2500,故池内大约有2500条鱼。 例2 口袋里有两个伍分、三个贰分和五个壹分的硬币,从中任取五个,求总值超过一角的概率。解一:令A=总值超过一角,现将从10个硬

6、币中任取5个的每种取法作为每个基本事件,显然本例属于古典概型问题,可利用组合数来解决。所取5个硬币总值超过一角的情形,其币值由大到小可根据其中有2个伍分、有1个伍分和没有伍分来考虑。则=0.5。解二:本例也可以先计算其对立事件=总值不超过一角考察5个硬币总值不超过一角的情形,其币值由小到大先根据壹分硬币、贰分硬币的不同个数来计算其有利情形的组合数。则=0.5或 =0.5例3 将n个人等可能地分配到N(nN)间房中去,试求下列事件的概率:(1)A=某指定的n间房中各有一人;(2)B=恰有n间房,其中各有一人;(3)C=某指定的房中恰有m(mn)个人。解:把n个人等可能地分配到N间房中去,由于并没

7、有限定每一间房中的人数,故是一可重复的排列问题,这样的分法共有Nn种。(1)对事件A,对指定的n间房,第一个人可分配到该n间房的任一间,有n种分法;第二个人可分配到余下的n1间房中的任一间,有n1种分法,以此类推,得到A共含有n!个基本事件,故(2)对事件B,因为n间房没有指定,所以可先在N间房中任意选出n间房(共有种选法),然后对于选出的某n间房,按照上面的分析,可知B共含有n!个基本事件,从而(3)对于事件C,由于m个人可从n个人中任意选出,故有种选法,而其余nm个人可任意地分配到其余的N1间房中,共有(N1)n-m种分配法,故C中共含有(N1)n-m个基本事件,因此注意:可归入上述“分房

8、问题”来处理的古典概型的实际问题非常多,例如:(1)生日问题:n个人的生日的可能情形,这时N=365天(n365);(2)乘客下车问题:一客车上有n名乘客,它在N个站上都停,乘客下车的各种可能情形;(3)印刷错误问题:n个印刷错误在一本有N页的书中的一切可能的分布(n不超过每一页的字符数);(4)放球问题:将n个球放入N个盒子的可能情形。值得注意的是,在处理这类问题时,要分清什么是“人”,什么是“房”,一般不能颠倒。例4(1994年考研题)设A,B为两事件,且P(A)=p,P(AB)=,求P(B)。解:由于现因为P(AB)=,则又P(A)=p,故。 注意:事件运算的德摩根律及对立事件公式的恰当

9、应用。例5 设某地区位于河流甲、乙的交汇处,而任一何流泛滥时,该地区即被淹没。已知某时期河流甲、乙泛滥的概率分别为0.2和0.3,又当河流甲泛滥时,“引起”河流乙泛滥的概率为0.4,求(1)当河流乙泛滥时,“引起”河流甲泛滥的概率;(2)该时期内该地区被淹没的概率。解:令A=河流甲泛滥,B=河流乙泛滥由题意知 P(A)=0.2,P(B)=0.3,P(B|A)=0.4再由乘法公式 P(AB)=P(A)P(B|A)=0.20.4=0.08,则(1)所求概率为 (2)所求概率为P(A+B)=P(A)+P(B)P(AB) =0.2+0.30.08=0.42。例6 设两个相互独立的事件A和B都不发生的概

10、率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,求P(A)。解:由题设可知因为A和B相互独立,则P(AB) = P(A)P(B),再由题设可知,又因为 ,即 P(AB) = P(BA),由事件之差公式得则有P(A) = P(B),从而有故有即 。例7(1988年考研题) 玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率相应为0,0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客开箱随机地查看4只,若无残次品,则买下该箱玻璃杯,否则退回。试求(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率。解:由于玻璃杯箱总共有三类

11、,分别含0,1,2只残次品。而售货员取的那一箱可以是这三类中的任一箱,顾客是在售货员取的一箱中检查的,顾客是否买下这一箱是与售货员取的是哪一类的箱子有关系的,这类问题的概率计算一般可用全概率公式解决,第二问是贝叶斯公式也即条件概率问题。首先令 A=顾客买下所查看一箱;B=售货员取的箱中恰好有i件残次品,i=0,1,2。显然,B0,B1,B2构成一组完备事件组。且(1)由全概率公式,有(2)由逆概率公式,得注意:本题是典型的全概率公式与贝叶斯公式的应用。例8(小概率事件原理)设随机试验中某事件A发生的概率为,试证明,不论0如何小,只要不断独立重复地做此试验,事件A迟早会发生的概率为1。证:令 A

12、i=第i次试验中事件A发生, i=1,2,3,由题意知,事件A1, A2, , An, 相互独立且P(Ai)=e,i=1,2,3,,则在n次试验中事件A发生的概率P()=1P()=1 当n+, 即为事件A迟早会发生的概率P()=1。四、习题二解答1考察随机试验:“掷一枚骰子,观察其出现的点数”。如果设i=掷一枚骰子所出现的点数为i , i=1,2,6试用i来表示该试验的基本事件、样本空间和事件A =出现奇数点和事件B=点数至少是4。解:基本事件:0,1,2,3,4,5,6。样本空间= 0,1,2,3,4,5,6。事件A=1,3,5;B=4,5,6。2用事件A、B、C表示下列各事件:(1)A出现

13、,但B、C不出现; (2)A、B出现,但C不出现;(3)三个都出现;(4)三个中至少有一个出现;(5)三个中至少有两个出现;(6)三个都不出现;(7)只有一个出现;(8)不多于一个出现;(9)不多于两个出现。解:(1) (2) (3) (4)或A+B+C或 (5) (6)或W(A+B+C)或(7) (8) (9)或WABC或 3从52张扑克牌中,任取4张,求这四张花色不同的概率。解:现将从52张扑克牌中任取4张的每种取法作为每个基本事件,其结果与顺序无关,故可用组合数来解决该古典概型问题。4在一本标准英语词典中共有55个由两个不同字母组成的单词,现从26个英文字母中任取两个字母排成一个字母对,

14、求它恰是上述字典中单词的概率。解:现将从26个英文字母中任取两个字母件的每种取法作为每个基本事件,其结果与顺序有关,故可用排列数来解决该古典概型问题。5某产品共20件,其中有4件次品。从中任取3件,求下列事件的概率。(1)3件中恰有2件次品;(2)3件中至少有1件次品;(3)3件全是次品;(4)3件全是正品。解:现将从20件产品中任取3件的每种取法作为每个基本事件,其结果与顺序无关,故可用组合数来解决该古典概型问题。(1);(2)或;(3);(4)。6房间里有10个人,分别佩戴着110号的纪念章,现等可能地任选三人,记录其纪念章号码,试求:(1)最小号码为5的概率;(2)最大号码为5的概率。解

15、:设A=任选三人中最小号码为5,B=任选三人中最大号码为5 (1)对事件A,所选的三人只能从510中选取,而且5号必定被选中。; (2)对事件B,所选的三人只能从15中选取,而且5号必定被选中。7某大学学生中近视眼学生占22%,色盲学生占2%,其中既是近视眼又是色盲的学生占1%。现从该校学生中随机抽查一人,试求:(1)被抽查的学生是近视眼或色盲的概率;(2)被抽查的学生既非近视眼又非色盲的概率。解:设 A=被抽查者是近视眼,B=被抽查者是色盲;由题意知,P(A)=0.22,P(B)= 0.02,P(AB)= 0.01,则(1)利用加法公式,所求概率为P(A+B)=P(A)+P(B)P(AB)=

16、0.22+0.020.01=0.23;(2)所求概率为P()=P()=1P(A+B)=10.23 =0.77。注意:上述计算利用了德摩根对偶律、对立事件公式和(1)的结果。8设P(A)=0.5,P(B)=0.3且P(AB)=0.l。求:(1)P(A+B);(2)P(+B)。解:(1)P(A+B)=P(A)+P(B)P(AB)=0.5+0.30.1=0.7;(2)P(+B)= P()+P(B)P(B)=1P(A)+P(B)P(BA)=1P(A) +P(B)P(B) P(AB)= 1P(A) + P(AB)=10.5+0.1=0.6。注意:上述计算利用了加法公式、差积转换律、对立事件公式和事件之差

17、公式。9假设接受一批药品时,检验其中一半,若不合格品不超过2,则接收,否则拒收。假设该批药品共100件,其中有5件不合格,试求该批药品被接收的概率。解:设 A=50件抽检药品中不合格品不超过1件,据题意,仅当事件A发生时,该批药品才被接收,故所求概率为。10设A,B为任意两个事件,且P(A)0,P(B)0。证明:(1)若A与B互不相容,则A和B不独立;(2)若 P(B|A)=P(B|),则A和B相互独立。证明:(1)用反证法。假定A和B独立,因为已知A与B互不相容,则AB=,P(AB)= P()=0故 P(A) P(B)= P(AB)=0但由已知条件P(A)0,P(B)0得P(A) P(B)0

18、,由此导出矛盾,所以若A与B互不相容,则A和B不独立。 (2)由已知P(B|A)=P(B|),又,则 即 P(AB)1P(A) = P(A)P(B)P(AB)P(AB)P(AB)P(A) = P(A)P(B)P(A)P(AB)故 P(AB) = P(A)P(B)这即A和B相互独立。(2)又证:由已知P(B|A)=P(B|)即 P(B|A)1P(A) = P(B)P(AB)P(B|A)P(B|A)P(A) = P(B)P(AB)P(B|A)P(AB) = P(B)P(AB)P(B|A) = P(B)这即A和B相互独立。11已知P(A)=0.1,P(B)=0.3,P(A | B)=0.2,求:(1

19、)P(AB);(2)P(AB);(3)P(B|A);(4)P();(5)P()。解:(1)P(AB)= P(B) P(A | B)=0.30.2=0.06;(2)P(A+B)=P(A)+P(B)P(AB)=0.1+0.30.06=0.34;(3);(4)P()=P(AB)=P(A)P(AB)=0.10.06=0.04;(5)。12某种动物活到12岁的概率为0.8,活到20岁的概率为0.4,问现年12岁的这种动物活到20岁的概率为多少?解:设A=该动物活到12岁,B=该动物活到20岁;由题意知P(A)=0.8,P(B)=0.4显然该动物“活到20岁”一定要先“活到12岁”,即有BA,且AB=B,

20、则所求概率是条件概率。13甲、乙、丙三人各自独立地去破译一密码,他们能译出该密码的概率分别是1/5,2/3,1/4,求该密码被破译的概率。解:设 A=甲译出该密码,B=乙译出该密码,C=丙译出该密码.由题意知,A,B,C相互独立,而且P(A)=1/5,P(B)=2/3,P(C)=1/4则密码被破译的概率为P(A+B+C)=1=1=0.8或 P(A+B+C)=P(A)+P(B)+ P(C)P(AB)P(AC)P(BC)+P(ABC)=P(A)+P(B)+ P(C)P(A) P(B)P(A) P(C)P(B) P(C) + P(A) P(B) P(C)=。14有甲乙两批种籽,发芽率分别为0.8和0

21、.7,在两批种籽中各任意抽取一粒,求下列事件的概率:(1)两粒种籽都能发芽;(2)至少有一粒种籽能发芽;(3)恰好有一粒种籽能发芽。解:设 A=甲种籽能发芽, B=乙种籽能发芽则由题意知,A与B相互独立,且有P(A)=0.8,P(B)=0.7,则所求概率为(1)P(AB)=P(A)P(B)=0.80.7=0.56;(2)P(A+B) =1P()=1P()=1=10.20.3=0.96;(3)P()=0.80.3+0.20.7=0.38。15设甲、乙两城的通讯线路间有n个相互独立的中继站,每个中继站中断的概率均为p,试求:(1)甲、乙两城间通讯中断的概率;(2)若已知p=0.005,问在甲、乙两

22、城间至多只能设多少个中继站,才能保证两地间通讯不中断的概率不小于 0.95?解:设Ak=第k个中继站通讯中断, k=1,2,n,则A1, A2, , An相互独立,而且有P(Ak)=p, k=1,2,n。(1)所求概率为P(A1+ A2+ An)=1P()=1P()=1=11(1p)n;(2)设甲、乙两城间至多只能设n个中继站,由题意,应满足P()=(1p)n0.95,即 (10.005)n0.950.995n0.95nlog0.9950.95=ln0.95/ln0.995=10.233故n=10,即甲、乙两城间至多只能设10个中继站。16在一定条件下,每发射一发炮弹击中飞机的概率是0.6,现

23、有若干门这样的炮独立地同时发射一发炮弹,问欲以99%的把握击中飞机,至少需要配置多少门这样的炮?解:设至少需要配置n门炮。再设Ak=第k门炮击中飞机, k=1,2,n,则A1, A2, , An相互独立,而且有P(Ak)=0.6, k=1,2,n。由题意,应有P(A1+ A2+ An)= 1P()=1=110.4 n0.99即 0.4 n0.01,则有nlog0.40.01=ln0.01/ln0.4=5.026故n=6,因此至少需要配置6门炮。17甲袋中有3只白球,7只红球,15只黑球;乙袋中10只白球,6只红球,9只黑球。现从两袋中各取一球,求两球颜色相同的概率。解:设以A1、A2、A3分别

24、表示从甲袋中任取一球为白球、红球、黑球;以B1、B2、B3分别表示从乙袋中任取一球为白球、红球、黑球。则所求两球颜色相同的概率为P(A1B1+ A2B2+ A3 B3)= P(A1)P(B1)+ P( A2)P(B2)+ P(A3)P( B3)。18在某地供应的某药品中,甲、乙两厂的药品各占65%、35%,且甲、乙两厂的该药品合格率分别为90%、80%,现用A1、A2分别表示甲、乙两厂的药品,B表示合格品,试求:P(A1)、P(A2)、P(B|A1)、P(B|A2)、P(A1B)和P(B)。解:由题中已知条件可得P(A1)=0.65,P(A2)=0.35,P(B|A1)=0.9,P(B|A2)

25、=0.8,P(A1B)= P(A1)P(B|A1)= 0.650.9=0.585,P(B)= P(A1)P(B|A1)+ P(A2)P(B|A2) =0.650.9+0.350.8=0.865。19某地为甲种疾病多发区,其所辖的三个小区A1,A2,A3的人口比例为974,据统计资料,甲种疾病在这三个小区的发病率依次为4,2,5,求该地甲种疾病的发病率。解:设以A1、A2、A3表示病人分别来自小区A1、A2、A3,以B表示患甲种疾病。则由题意知P(A1)=,P(A2)=,P(A3)=,P(B|A1)=0.004,P(B|A2)=0.002,P(B|A3)=0.005,则该地甲种疾病的发病概率为P

26、(B)= P(A1)P(B|A1)+ P(A2)P(B|A2)+ P(A3)P(B|A3)=3.5。20若某地成年人中肥胖者(A1)占有10,中等者(A2)占82,瘦小者(A3)占8,又肥胖者、中等者、瘦小者患高血压病的概率分别为20,10,5。(1)求该地成年人患高血压的概率;(2)若知某人患高血压病,他最可能属于哪种体型?解:设B=该地成年人患高血压,则由题意知P(A1)=0.10,P(A2)=0.82,P(A3)=0.08,P(B|A1)=0.20,P(B|A2)=0.10,P(B|A3)=0.05, (1)该地成年人患高血压的概率为P(B)= P(A1)P(B|A1)+ P(A2)P(

27、B|A2)+ P(A3)P(B|A3)=0.106;(2)若已知某人患高血压病,他属于肥胖者(A1)、中等者(A2)、瘦小者(A3)体型的概率分别为P(A1|B)= P(A2|B)= P(A3|B)= 因为 P(A2|B) P(A1|B) P(A3|B)故若知某人患高血压病,他最可能属于中等体型。21三个射手向一敌机射击,射中概率分别为0.4,0.6和0.7。若一人射中,敌机被击落的概率为0.2;若两人射中,敌机被击落的概率为0.6;若三人射中,则敌机必被击落。(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率。解:设A1、A2、A3分别表示第一个射手、第二个射手、第三个射

28、手射中敌机;B0、B1、B2、B3分别表示无人射中、一人射中、两人射中、三人射中敌机;C表示敌机被击落。则A1、A2、A3相互独立,且由题意可得P(A1)=0.4,P(A2)=0.6,P(A3)=0.7P(B0)= P()=P() P() P()= 0.60.40.3=0.072P(B1)= P()=0.40.40.3+0.60.60.3+0.60.40.7=0.324P(B2)= P()=0.40.60.3+0.60.60.7+0.40.40.7=0.436P(B3)= P()=P(A1) P(A2) P(A3)= 0.40.60.7=0.168P(C|B0)=0,P(C|B1)=0.2,P

29、(C|B2)=0.6,P(C|B3)=1(1)敌机被击落的概率为P(C)=P(C|B0)P(B0)+P(C|B1)P(B1)+P(C|B2)P(B2)+P(C|B3)P(B3)=00.072+0.20.324+0.60.436+10.168=0.4944; (2)所求概率为P(B3|C)=。五、思考与练习 (一)填充题 1若P(A)=0.3,P(B)=0.6,则(1)若A和B独立,则P(A+B)= , P(BA)= ;(2)若A和B互不相容,则P(A+B)= ,P(BA) = ;(3)若A B,则 P(A+B)= ,P(BA)= 。2. 如果A与B相互独立,且P(A)= P(B)= 0.7,则

30、P()= 。3在4次独立重复试验中,事件A至少出现1次的概率为,则在每次试验中事件A出现的概率是 。 (二)选择题1. 下列说法正确的是( )A. 任一事件的概率总在(0,1)之内 B. 不可能事件的概率不一定为0C. 必然事件的概率一定为1 D. 以上均不对。2以A表示事件“甲种药品畅销,乙种药品滞销”,则其A的对立事件为( ) A. 甲,乙两种药品均畅销 B. 甲种药品滞销,乙种药品畅销 C. 甲种药品滞销” D. 甲种药品滞销或乙种药品畅销3. 有100张从1到100号的卡片,从中任取一张,取到卡号是7的倍数的概率为( )A. B. C. D. 4. 设A和B互不相容,且P(A)0,P(

31、B)0,则下列结论正确的是( ) A. P(B|A)0 B. P(A)=P(A|B) C. P(A|B)=0 D. P(AB)=P(A)P(B) (三)计算题1设=1,2,3,4,5,6,7,A=2,3,4,B=3,4,5。试求下列事件:(1);(2)+B。2某城市的电话号话由0,1,2,9这10个数字中任意8个数字组成,试求下列电话号码出现的概率:(1)数字各不相同的电话号码(事件A);(2)不含2和7的电话号码(事件B);(3)5恰好出现两次的电话号码(事件C)。3一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率: (1)第一卷出现在两边; (2)第一卷及第五卷出现在两边; (3

32、)第一卷或第五卷出现在两边; (4)第三卷正好在正中。4电路由电池A与两个并联的电池B、C串联而成,设电池A、B、C是否损坏相互独立,且它们损坏的概率依次为0.3,0.2,0.2,求电路发生间断的概率。5. 设一医院药房中的某种药品是由三个不同的药厂生产的,其中一厂、二厂、三厂生产的药品分别占1/4、1/4、1/2。已知一厂、二厂、三厂生产药品的次品率分别是7%,5%,4%。现从中任取一药品,试求(1)该药品是次品的概率;(2)若已知任取的药品是次品,求该次品是由三厂生产的概率。6盒中放有12个乒乓球,其中有9个球是新球。第一次比赛从盘中任取3个来用,比赛后仍放回盒中;第二次比赛时又从盒中任取

33、3个。(1)求第二次取出的球都是新球的概率;(2)若已知第二次取出的球都是新球,求第一次取到的都是新球的概率。六、思考与练习参考答案 (一)填充题1. (1)0.72,0.42;(2)0.9,0.6;(3)0.6,0.32. 0.09 3. (二)选择题1. C; 2. D; 3. A; 4 .C (三)计算题1. =1, 5,6, 7,=1, 2,6, 7,则(1)=1, 6, 7;(2)+B=1,3,4,5,6,72(1)(2)(3)3. (1)=0.4;(2)=0.1;(3)=0.7;或=0.7;或=0.7(4)=0.24已知 P()=0.3,P()=0.2,P()=0.2 且A、B、C

34、相互独立 则所求概率P()=P()+P()P()= P()+P()P()P()P()P()=0.3+0.20.20.30.20.2=0.3285. 令A=该药品是次品;Bk=药品是由k厂生产的,k=1,2,3。由题意知 P(B1)=0.25, P(B2)=0.25,P(B3)=0.5,P(A|B1)=0.07,P(A|B2)=0.05,P(A|B3)=0.04,(1)P(A)=P(A|B1)P(B1)+P(A|P2)P(B2)+P(A|B3)P(B3) =0.070.25+0.050.25+0.040.50=0.05(2)6令Ak=第一次比赛任取3球中有k个新球,k=0,1,2,3;B=第二次

35、取出的球都是新球。由题意得 P(Ak)=, P(B|Ak)=,k=0,1,2,3。(1)(2)=0.238第三章 随机变量及其分布一、 学习目的和要求1. 理解随机变量及其分布函数的概念;2. 熟练掌握离散型、连续型随机变量的分布及性质;3. 熟练掌握常用数字特征:数学期望E(X)和方差D(X)及其性质;4. 熟练掌握二项分布、泊松分布、正态分布等的性质及概率计算;5. 了解随机变量函数的分布;6. 了解随机向量及分布函数的概念、性质;7. 掌握离散型随机向量和连续型随机向量及其分布;8. 掌握二维随机向量的数字特征;9. 了解契比晓雪夫不等式和大数定律及其意义;10. 掌握中心极限定理及其应

36、用;11. 了解用Excel计算二项分布、泊松分布、正态分布等常用分布的概率。二、内容提要(一)随机变量及常用分布1. 离散型随机变量及常用分布名 称定 义性质或背景备 注分布律PX=xk=pk,k=1,2, 或Xx1 x2 xk Pp1 p2 pk 1. pk 0,k=1,2,2. 0-1分布PX=1=p, PX=0=q,或X0 1Pq p二项分布n=1的特例:B(1,p)( 一重贝努里试验)EX=pD(X)=pq二项分布B(n,p)PX= k= , k=0,1, ,nX为n重贝努里试验中A事件发生的次数EX=np D(X)=npq泊松分布P(l)PX=k=,k0,1,2, , l0是常数二

37、项分布泊松近似公式(lnp) (n很大,p较小) EX=l D(X)= l超几何分布PX=k= k=1,2,min(M,n)无放回产品抽样试验当N+时,时, EX= 2. 连续型随机变量及常用分布名 称定 义性质或背景备 注密度函数f(x)对任意ab有PaXb=1. f(x)02. 3. 对任意常数a,有PX= a=0等价定义:对X的分布函数有F(x)=,x+正态分布N (m, s2)f (x) = x+PaXb=E(X)=mD(X)= s2标准正态分布N (0, 1)j(x) = x0为常数E(X)=1/l D(X)=1/ l2均匀分布Ua,b直线上几何概率模型的分布描述E(X)= (a+b)/2 D(X)=(b-a)2/12对数正态分布LN()f(x) =若X服从对数正态分布LN(),则lnXN()韦布尔分布W(m, a, b)f(x)= m =1且a=0时为指数分布;m =3.5时近似于正态分布分布函数为F(x)=,(xa)3. 随机变量的分布函数类 型定 义性 质备 注通用定义F(x)PXx,x+1. 0F(x)1;2. F()=0 , F(+)=1 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论