数的开方知识点及复习_第1页
数的开方知识点及复习_第2页
数的开方知识点及复习_第3页
数的开方知识点及复习_第4页
数的开方知识点及复习_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-PAGE . z. 数的开方知识点及复习知识点一:平方根 1平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。 2开平方:求一个数a的平方根的运算叫做开平方.3平方根的表示:a的平方根记作: 。a叫做被开方 4求一个数的平方根的方法:利用平方和开平方互为逆运算5平方根的性质一个正数有两个平方根,它们互为相反数0有一个平方根,它是0本身负数没有平方根。6算术平方根的定义:非负数a的正的平方根。 7算术平方根表示:一个非负数a的平方根用符号表示为:,读作:根号a,其中a叫做被开方数 8算术平方根的性质:正数a的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根。注1算术

2、平方根是非负数,具有非负数的性质; (a0)是一个非负数, 即 0;2假设两数的平方根相等或互为相反数时,这两数相等;反之,假设两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1; 4).非负数的算术平方根再平方仍得这个数,即:( )2=a(a0); 5.*数的平方的算术平方根等于*数的绝对值,即=|a|= 6).平方根有三种表示形式: , ,它们的意义分别是:非负数a的平方根,非负数a的算术平 方 根,非负数a的负平方根。要特别注意: 7).平方根与算术平方根的区别与联系: 区别:定义不同 个数不同: 表示方法不同: 联系:具有包含关系

3、: 存在条件一样: 0的平方根和算术平方根都是0。知识点二、立方根:1立方根的定义:如果一个数的立方等于a,则这个数叫做a的立方根也叫三次方根。如果*3=a,则*叫做a的立方根。记作: ,读作三次根号a 。2开立方:求一个数的立方根的运算叫做开立方3求一个数的立方根的方法:利用立方和开立方互为逆运算4立方根的性质一个正数有一个正的立方根,即假设a0,则 一个负数有一个负的立方根,即假设a0,则0的立方根是0,即假设a=0,则 。注:1假设两数的立方根相等,则这两数相等;反之,假设两数相等,则这两数的立方根相等;2立方根等于本身的数有0、1、-1.典型例题:例1、*为何值时,以下代数式有意义。1

4、 2 3 4 5 6例2、2a-1的算术平方根是3,3a+b-1的平方根是,求a+2b的平方根。例3、假设*、y都是实数,且,求*+3y的平方根。例4、如果是a+b+3的算术平方根,是a+2b的立方根,求MN的立方根。例5:=0,*数a, b的值。练习:填空:10.25的平方根是;的算术平方根是 , 的平方根是。的相反数是,的倒数是,的绝对值是;3,=,=。4当*时,有意义;假设有意义,则*;当时,有意义;当时,有意义5的平方根是_,的算术平方根是_, 的平方根是_,的立方根是。6假设一个正数的平方根是和,则,这个正数是7如果有是m的一个平方根,则m的算术平方根是_;8计算:=_9,则;(a+

5、2)2|b1|0,则abc。10*种洗衣机的包装箱是长方形,其高为1.2m , 体积为1.2, 底面是正方形,则该包装箱的底面边长为m.11ABC的三边长分别为a、b、c,,且满足,则此ABC的周长=。12请你观察、思考以下计算过程:因为,所以,同样,因为,所以由此猜测=_2、选择:1一个数的平方根是它本身,则这个数的立方根是 A、 1 B、 0 C、 -1 D、1,-1或02以下各式中无意义的是( )A、 B、 C、 D 、3以下说法正确的选项是( ) A 、4的平方根是2 B、-16的平方根是4 C、实数a的平方根是 D、实数a的立方根是4有理数中,算术平方根最小的是 A 、1 B 、0

6、C、0.1 D、不存在5以下说法中,正确的选项是 A、27的立方根是3,记作=3 B、-25的算术平方根是5 C、的三次立方根是 D、正数的算术平方根是6的值是 A 是正数 B 是负数 C 是零 D 以上都可能7假设,则A-0.7B0.7C0.7D0.498以下等式:,; 正 确的有 个A4 B3 C2 D19设、为实数,且,则的值是 A、1 B、9 C、4 D、510以下说法中正确的选项是 A、4是8的算术平方根 B、16的平方根是4 C、是6的平方根 D、没有平方根11以下各式中错误的选项是 A、 B、 C、 D、12以下计算中正确的选项是 A、 B、 C、 D、 3、求以下各数的平方根和

7、算术平方根:1234、计算:123456 7-+8 95、解方程:1234(*+3)3=27 5 664(*-1)3+125=06、实数满足,求的值.7、a、b在数轴上的位置如下图,化简:8、2*-1的平方根是3,3*+y-1的平方根是4,求*+2y的平方根。9、:实数、满足条件试求的值知识点三:实数根底知识 1无理数的定义: 叫做无理数 2有理数与无理数的区别: 有理数总可以用 或 表示;反过来,任何 或 也都是有理数。而无理数是 小数,有理数和无理数区别之根本是有限及无限循环和无限不循环。 有理数可以化成 ,无理数不能化成 。3.常见的无理数类型一般的无限不循环小数,如:1.4142135

8、6看似循环而实际不循环的小数,如0.1010010001(相邻两个1之间0的个数逐次加1)。有特定意义的数,如:=3.14159265 (4).开方开不尽的数。如:。实数、概念:_和_统称为实数。分类按定义 _ _ _ _ _ 有限小数或_小数 _ 实数 _ _ _ 无限不循环小数_ 正实数按 性质 0 负实数6、实数的有关性质a与b互为相反数=a+b=0 a与b互为倒数=ab=1任何实数的绝对值都是非负数,即0 互为相反数的两个数的绝对值相等, 即=正数的倒数是正数;负数的倒数是负数;零没有倒数. A.实数和数轴上的点的对应关系:实数和数轴上的点是一一对应的关系 B.实数的大小比拟:1.在数

9、轴上表示的两个数,右边的数总比左边的数大。 2.正数大于零,零大于负数,正数大于一切负数,两个负数比拟,绝对值大的反而小。 C.实数中的非负数及其性质 非负数有如下三种形式任何一个实数a的绝对值是非负数,即0 任何一个实数的平方是非负数,即0;任何一个非负数a的算术平方根是非负数,即0 (4)、非负数有以下性质非负数有最小值零 有限个非负数之和仍然是非负数 几个非负数之和等于0,则每个非负数都等于0。二二、典型例题经典例题类型一有关概念的识别例1下面几个数:0.23 ,1.010010001,3,其中,无理数的个数有 A、1 B、2 C、3 D、4类型二计算类型题例2设,则以下结论正确的选项是

10、 A. B. C. D. 类型三数形结合例3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为_2例4.实数、在数轴上的位置如下图: 化简 类型四实数绝对值的应用例 4化简以下各式:(1) |-1.4|(2) |-3.14 (3) |-| (4) |*-|*-3| (*3) (5) |*2+6*+10|类型五实数应用题例 5有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。类型六引申提高例6的整数局部为a,小数局部为b,求a2-b2的值.A组根底一、细心选一选1以下各式中正确的选项是 A B.

11、 C. D. 2. 的平方根是( ) A4 B. C. 2 D. 3. 以下说法中 无限小数都是无理数 无理数都是无限小数 -2是4的平方根 带根号的数都是 无理数。其中正确的说法有 A3个 B. 2个 C. 1个 D. 0个4和数轴上的点一一对应的是 A整数 B.有理数 C. 无理数 D. 实数5对于来说 A有平方根 B只有算术平方根 C. 没有平方根 D. 不能确定6在两个1之间依次多1个0中,无理数 的个数有 A3个 B. 4个 C. 5个 D. 6个7面积为11的正方形边长为*,则*的*围是 A B. C. D. 8以下各组数中,互为相反数的是 A-2与 B.-与 C. 与 D. 与9

12、-8的立方根与4的平方根之和是 A0 B. 4 C. 0或-4 D. 0或410一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是 A B. C. D. 二、耐心填一填11的相反数是_,绝对值等于的数是_,=_。12的算术平方根是_,=_。13_的平方根等于它本身,_的立方根等于它本身,_的算术平方根等于它本身。14*的算术平方根是8,则*的立方根是_。15填入两个和为6的无理数,使等式成立: _+_=6。16大于,小于的整数有_个。17假设2a-5与互为相反数,则a=_,b=_。18假设a=6,=3,且ab0,则a-b=_。19数轴上点A,点B分别表示实数则A、B两点间的距

13、离为_。20一个正数*的两个平方根分别是a+2和a-4,则a=_,*=_。三、认真解一解21计算+ 4 9 + 2 结果保存3个有效数字在数轴上表示以下各数和它们的相反数,并把这些数和它们 的相反数按从小到大的顺序排列,用号连接:B组提高一、选择题: 1的算术平方根是 A0.14 B0.014 C D2的平方根是 A6 B36 C6 D3以下计算或判断:3都是27的立方根;的立方根是2;, 其中正确的个数有 A1个 B2个 C3个 D4个 4在以下各式中,正确的选项是 A; B; C; D 5以下说法正确的选项是 A有理数只是有限小数 B无理数是无限小数 C无限小数是无理数 D是分数6以下说法错误的选项是 A B C2的平方根是 D7假设,且,则的值为 A B C D 8以下结论中正确的选项是 A数轴上任一点都表示唯一的有理数; B数轴上任一点都表示唯一的无理数;C. 两个无理数之和一定是无理数; D. 数轴上任意两点之间还有无数个点9-27 的立方根与的平方根之和是 A0 B6 C0或-6 D-12或6 10以下计算结果正确的选项是 A B C D二填空题: 11以下各数:3.141、0.33333、0.03相邻两个3之间0的个数逐次增加2、0中,其中是有理数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论