




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.4.3 不同函数增长的差异指数函数与对数函数一二一、指数函数与一次函数、二次函数增长的差异比较1.(1)阅读下面材料并回答问题1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只,可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已.他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的兔子,澳大利亚人才算松了一口气.想想看,澳大利亚的兔子为什么在不到100年的时间
2、内发展到75亿只?答案:由于兔子在适宜环境下,其繁育的数量呈指数增长趋势,指数增长又称为“爆炸性增长”,因此发展十分迅猛.一二(2)你能借助图象得出在xR时,2x=x,2x=x2的根的个数吗?在(0,+)上存在满足2xx2的x的范围是什么?答案:2x=x无根,2x=x2的根有3个(2正1负);在(0,+)上,存在这样的数x0满足 x0.在(0,+)上,当0 x4时均有2xx2成立.2.填空(1)一般地,指数函数y=ax(a1)与一次函数y=kx(k0)的增长差异都与上述情况类似.即使k的值远远大于a的值,y=ax(a1)的增长速度最终都会大大超过y=kx(k0)的增长速度,即总存在这样的x0(
3、0,+),当xx0时,恒有(2)对于y=ax(a1)与二次函数y=x2也有这样的结论,即存在x0(0,+),使当xx0时总有一二3.做一做(1)下列函数中,增长速度最快的是()A.y=2xB.y=3xC.y=5xD.y=10 x(2)在x(0,+)时,满足2xx2的x的取值范围为.解析:(1)四个选项中的函数都是指数函数,且底数均大于1,D项中底数10最大,则函数y=10 x的增长速度最快.答案:(1)D(2)2xx吗?对于log2xx2结论又如何?答案:结合图象(略)分析可知,log2x=x只有一个根,log2x=x2也只有一个根.存在这样的x0(0,+)使log2x0 x0,同样也存在这样
4、的x0(0,+)使log2x0 成立,但最终随着x取值足够大,log2xx2,log2x1)与一次函数y=kx(k0)在区间(0,+)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k0)保持固定的增长速度,而对数函数y=logax(a1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,logax可能会大于kx,但由于logax的增长慢于kx的增长,因此总会存在一个x0,当xx0时,恒有logax1)与y=x2也存在类似结论,即总会存在一个x0,当xx0时,恒有logaxx2.一二3.做一做(1)下列函数增长速度最快的是()A.y=log2xB.y=log6xC
5、.y=log8xD.y=lg x(2)方程x2-log2x=0的解的个数是()A.1B.2C.3D.0解析:(1)四个选项中的对数函数在区间(0,+)上均是增函数,选项A中y=log2x的底数2最小,则函数y=log2x的增长速度最快.答案:(1)A(2)D探究一探究二探究三规范解答随堂演练研究函数y=2x,y=x2,y=log2x的增长差异例1在同一坐标系内作出函数y=2x,y=x2,y=log2x的图象并探究它们的增长情况.分析:先比较y=2x和y=x2,再比较y=log2x和y=x2,最后综合判断得出整体规律.解:在同一直角坐标系内作出函数y=2x,y=x2,y=log2x的图象,如图所
6、示,观察归纳可知,当0 xx2log2x.当2x2xlog2x.当x4时,2xx2log2x.探究一探究二探究三规范解答随堂演练反思感悟 在(0,+)上,尽管函数y=ax(a1),y=logax(a1)和y=x2都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=ax(a1)的增长速度越来越快,会超过并远远大于y=x2(n0)的增长速度,而y=logax(a1)的增长速度则会越来越慢,总会存在一个x0,当xx0时,有logaxx21)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x.假设他们一直跑下去,最终跑在最前面的人具有
7、的函数关系是 ()A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2xD.f4(x)=2x解析:当x足够大时,跑在最前面的人具有的函数关系为指数型函数.答案:D探究一探究二探究三规范解答随堂演练根据数据信息判断函数类型例2在一次数学实验中,运用图形计算器采集到如下一组数据:则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()探究一探究二探究三规范解答随堂演练解析:散点图如图所示:由散点图可知,此函数图象不是直线,排除A选项;此函数图象是“上升”的,因此该函数为增函数,排除C,D选项,故选B.答案:B探究一探究二探究三规范解答随堂演练反思感悟 判断函数类型的三种方法
8、1.当函数关系式确定时,一般把数值代入分析即可.2.当函数关系不明确时,可先画出散点图,再根据散点图与各种类型函数的增长规律进行选择.3.当需要独立建立模型时,要设出函数模型逐一验证筛选.探究一探究二探究三规范解答随堂演练变式训练2在某种新型材料的研制中,实验人员获得了下列一组实验数据(见下表).现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A.y=2xB.y=log2xC.y= (x2-1)D.y=2.61x解析:将数据代入验证各选项,与函数性质的应用相结合.答案:B探究一探究二探究三规范解答随堂演练图象信息迁移问题例3如图所示的是一份统计图表,根据此图表得到的
9、以下说法中,正确的有()(1)这几年人民生活水平逐年得到提高;(2)人民生活费收入增长最快的一年是2016年;(3)生活费价格指数上涨速度最快的一年是2017年;(4)虽然2018年生活费收入增长是缓慢的,但由于生活费价格指数也略有降低,因而人民生活有较大的改善.A.1项B.2项C.3项D.4项探究一探究二探究三规范解答随堂演练解析:由题意,“生活费收入指数”减“生活费价格指数”所得的差是逐年增大的,故(1)正确;“生活费收入指数”在20162017年最陡,故(2)正确;“生活费价格指数”在20172018年最平缓,故(3)不正确;由于“生活费价格指数”略呈下降趋势,而“生活费收入指数”曲线呈
10、上升趋势,故(4)正确.答案:C反思感悟 用函数图象分析函数模型是一种常见的题型.主要考查学生的识图能力,利用图象信息分析问题和解决问题的能力.这类问题应结合图象的特征,观察坐标轴所代表的含义,紧扣题目的语言描述,并把它转化为数学特征(单调性、最值等),即可得到完美的解决.探究一探究二探究三规范解答随堂演练变式训练3某天0时,小鹏同学生病了,体温上升,吃过药后感觉好多了,中午时他的体温基本正常(正常体温为37 ),但是下午他的体温又开始上升,直到半夜才感觉身上不那么发烫了.下面能大致反映出小鹏这一天(0时至24时)体温变化情况的图象是()探究一探究二探究三规范解答随堂演练解析:观察图象A,体温
11、逐渐降低,不符合题意;图象B不能反映“下午他的体温又开始上升”;图象D不能体现“下午他的体温又开始上升”与“直到半夜才感觉身上不那么发烫了”.综上,只有C是正确的.答案:C探究一探究二探究三规范解答随堂演练选择恰当函数模型解决实际问题典例 某公司为了实现1 000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金总数不超过利润的25%.现有三个奖励方案模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合该公司的要求?分析:某个奖
12、励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金总数不超过利润的25%,由于公司总的利润目标为1 000万元,所以部门销售利润一般不会超过公司总的利润.于是,只需在区间10,1 000,分别检验三个模型是否符合公司要求.探究一探究二探究三规范解答随堂演练解:借助计算机作出函数y=5,y=0.25x,y=log7x+1,y=1.002x在第一象限内的大致图象(如图所示):观察图象发现,在区间10,1 000上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log2x+1
13、进行奖励时才符合公司的要求,下面通过计算确认上述判断.对于模型y=0.25x,它在区间10,1 000上递增,当x(20,1 000)时,y5,因此该模型不符合要求;探究一探究二探究三规范解答随堂演练对于模型y=1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x0满足1.002x=5,由于它在区间10,1 000上递增,因此当xx0时,y5,因此该模型y=1.002x也不符合要求;对于模型y=log7x+1,它在区间10,1 000上递增,而且当x=1 000时,y=log71 000+14.555,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x
14、+1奖励时,奖金是否不超过利润的25%,即当x10,1 000时,是否有令y=log7x+1-0.25x,x10,1 000.利用计算机作出函数f(x)的图象(如图所示).由图象可知它是递减的,因此f(x)f(10)-0.316 70,即y=log7x+10.25x,所以当x10,1 000时, x0时,下列不等式恒成立的是()A.2xlog2xx2B.x2log2x2xC.log2x2xx2D.log2xx20且a1)的解的个数为.解析:当a1时,在同一坐标系中画出y=logax和y=a-x的图象,如图所示,由图(1)可知两函数图象只有一个交点;同理,当0a1时,由图(2)知两函数图象也只有一个交点.因此,不论何种情况,方程只有一个实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑大师手绘方案设计思路
- 居住建筑立面处理方案设计
- 配电方案的咨询费
- 荥阳市安全培训课课件
- 校园井盖涂鸦大赛策划书11
- 学校文化墙安全施工方案
- 小巷建筑调色方案设计思路
- 海南建筑施工动画方案设计
- 团队合作致辞范文
- 公务员政治政审个人鉴定
- 党务工作论述知识课件
- 大中型企业安全生产标准化管理体系要求变化解读
- 自动扶梯应急救援预案
- 老人骨折术前护理
- 工伤认定申请证人证言模板
- 压裂返排液的深度处理及再利用技术研究进展
- 2024届江西省南昌市高三上学期零模物理试题【含答案解析】
- 南京理工大学介绍课件模板
- 高中物理听评课记录表
- 2025届天津市春季高考升学考试全真模拟试卷(一)英语(无答案)
- 《流行音乐发展史》课件
评论
0/150
提交评论