




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几种不同增长的函数模型OR圆的周长随着圆的半径的增大而增大:L=2*R (一次函数)圆的面积随着圆的半径的增大而增大:S=*R2 (二次函数)12222324回顾: 某种细胞分裂时,由1个分裂成两 个,两个分裂成4个,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系是 。第一次第二次第三次第四次第x次 个y = 2x2x例题:例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多 回报10元;方案三:第一天回报0.4元,以后每天的回报比前 一天翻一番。请问,你会选择哪种投资方案呢?思考投资方案
2、选择原则:投入资金相同,回报量多者为优 比较三种方案每天回报量(2) 比较三种方案一段时间内的总回报量 哪个方案在某段时间内的总回报量最多,我们就在那段时间选择该方案。分析 我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据。解:设第x天所得回报为y元,则 方案一:每天回报40元; y=40 (xN*)方案二:第一天回报10元,以后每天比前一天多回 报10元; y=10 x (xN*)方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。 y=0.42x-1 (xN*)x/天方案一方案二方案三y/元增长量/元y/元增长量/元y/元增长量/元1400
3、100.4240020100.80.4340030101.60.8440040103.21.6540050106.43.26400601012.86.47400701025.612.88400801051.225.694009010102.451.23040030010214748364.8107374182.4图112-1从每天的回报量来看: 第14天,方案一最多: 每58天,方案二最多: 第9天以后,方案三最多;有人认为投资14天选择方案一;58天选择方案二;9天以后选择方案三?累积回报表 天数方案1234567891011一4080120160200240280320360400440二
4、103060100150210280360450550660三0.41.22.8612.425.250.8102204.4409.2816.8结论 投资8天以下(不含8天),应选择第一种投资方案;投资810天,应选择第二种投资方案;投资11天(含11天)以上,应选择第三种投资方案。例题的启示解决实际问题的步骤:实际问题读懂问题抽象概括数学问题演算推理数学问题的解还原说明实际问题的解例2、某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且资金y(单位:万元)随着销售利润x (单位:万元)的增加而增加,但资金数不超过5万元,同
5、时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求呢?(1)、由函数图象可以看出,它在区间10,1000上递增,而且当x=1000时,y=log71000+14.555,所以它符合资金不超过5万元的要求。模型y=log7x+1(2)、再计算按模型y=log7x+1奖励时,资金是否不超过利润的25%,即当x 10,1000时,是否有成立。令f(x)= log7x+1-0.25x, x 10,1000.利用计算机作出函数f(x)的图象,由图象可知它是递减的,因此 f(x)f(10) -0.31670,即 log7x+11)
6、和幂函数y=xn (n0),通过探索可以发现:在区间(0,+)上,无论n比a大多少,尽管在x的一定范围内,ax会小xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当xx0时,就会有axxn.结论2:一般地,对于指数函数y=logax (a1)和幂函数y=xn (n0),通过探索可以发现:在区间(0,+)上,随着x的增大,logax增大得越一越慢,图象就像是渐渐地与x轴平行一样。尽管在x的一定范围内, logax可能会小xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当xx0时,就会有logax1),y=logax (a1)和y=xn (n0)都是增函数。(2)、随着x
7、的增大, y=ax (a1)的增长速度越来越快,会远远大于y=xn (n0)的增长速度。(3)、随着x的增大, y=logax (a1)的增长速度越来越慢,会远远大于y=xn (n0)的增长速度。总存在一个x0,当xx0时,就有logaxxnax例3、一辆汽车在某段路程的行驶速度与时间的关系如图所示。(1)、求图中阴影部分的面积,并说明所求面积的实际含义;(2)、假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km,试建立汽车行驶这段路程时汽车里程表读数s km与时间 t h的函数解析式,并作出相应的图象。图象例4、人口问题是当世界各国普遍关注的问题。认识人口数量的变化规律,可以为有
8、效控制人口增长提供依据。早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:y = y0 ert期中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年增长率。(1)、如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)、如果表的增长趋势,大约在哪一年我国的人口达到12亿?y = y0 ert例5、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元。销售单价与日均销售量的关系如下表: 请根据心上数据作出分析,这个经营部怎样定价才能获得最大利润?销售单价/元6789101112日均销售量/桶480440400360320280240例6、某地区不同身高的未成年男性的体重平均值如下表:(1)、根据表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重y kg与身高x cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高等教育自学考试试卷及答案
- 风险投资草场租赁与项目开发合同
- 茶楼与茶叶包装设计公司合作协议
- 汽车使用权抵押贷款合同范本细则
- 高额抵押车辆质押担保协议书
- 【课件】加减消元法+++课件人教版七年级数学下册+
- 乡镇红色活动方案
- 标书制作流程图与教材
- 咨询项目安全管理制度
- 医保统筹基金管理制度
- 高中物理情境化选择题专题练习
- 物流运输托运单模板完整版
- 突发环境事件应急预案备案表
- 施工进度计划表(参考模板)
- 《项目五:新能源汽车制动系统》工作页
- 误吸评价表完整优秀版
- 汽车修理行业危险废物管理
- DL∕T 2101-2020 架空输电线路固定翼无人机巡检系统
- 园林绿化工程安全和功能检验资料核查及主要功能抽查记录
- 2022更新国家开放大学电大《计算机应用基础(专)》终结性考试大作业答案任务一
- 罗伊护理个案模板
评论
0/150
提交评论