




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、关于数列求和的基本方法和技巧第一张,PPT共二十五页,创作于2022年6月数列是高中代数的重要内容,又是学习高等数学的基础. 在高考占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学谈谈数列求和的基本方法和技巧. 第二张,PPT共二十五页,创作于2022年6月一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、等差数列求和公式: 2、等比数列求和公式: 3、 4、5、第三张,PPT共二十五页,创作于2022年6月例1 已知 , 求 的前n项和 由等比数列求和公式得第
2、四张,PPT共二十五页,创作于2022年6月例2 设Sn1+2+3+n,nN*,求 的最大值解:由等差数列求和公式得 当 ,即n8时, 第五张,PPT共二十五页,创作于2022年6月二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中 an 、 bn 分别是等差数列和等比数列.第六张,PPT共二十五页,创作于2022年6月 解:由题可知, 的通项是等差数列2n1的通项与等比数列 的通项之积设 (设制错位)得 (错位相减)再利用等比数列的求和公式得: 例3 求和 : 第七张,PPT共二十五页,创作于2022年6月例4 求数列 前n项
3、的和解:由题可知, 的通项是等差数列2n的通项与等比数列 的通项之积设 (设制错位)得第八张,PPT共二十五页,创作于2022年6月三、反序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 .第九张,PPT共二十五页,创作于2022年6月例5 理求证:证明: 设 . 把式右边倒转过来得 (反序) 又由可得 . +得 (反序相加) 第十张,PPT共二十五页,创作于2022年6月例6 求的值解:设. 将式右边反序得 . 反序) 又因为 +得 89 S44.5第十一张,PPT共二十五页,创作于2022年6月四、分组法求和有一类
4、数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.第十二张,PPT共二十五页,创作于2022年6月例7 求数列的前n项和:, 解:设将其每一项拆开再重新组合得(分组) 当a1时,(分组求和) 当时,第十三张,PPT共二十五页,创作于2022年6月例8 求数列n(n+1)(2n+1)的前n项和.解:设 将其每一项拆开再重新组合得 Sn(分组) 第十四张,PPT共二十五页,创作于2022年6月五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最
5、终达到求和的目的. 通项分解(裂项)如: 第十五张,PPT共二十五页,创作于2022年6月例9 在数列an中,又求数列bn的前n项的和 解: (裂项) 数列bn的前n项和 第十六张,PPT共二十五页,创作于2022年6月例10 求证: 解:设(裂项) (裂项求和) 原等式成立 第十七张,PPT共二十五页,创作于2022年6月 六、合并法求和 针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.第十八张,PPT共二十五页,创作于2022年6月例11 求cos1+ cos2+ cos3+ cos178+ cos179的值. 解:
6、设Sn cos1+ cos2+ cos3+ cos178+ cos179 (找特殊性质项) Sn (cos1+ cos179)+( cos2+ cos178) + (cos3+ cos177)+(cos89+ cos91) + cos90 0第十九张,PPT共二十五页,创作于2022年6月例12 数列an:,求S2002. (找特殊性质项) S2002(合并求和) 第二十张,PPT共二十五页,创作于2022年6月 (找特殊性质项) 第二十一张,PPT共二十五页,创作于2022年6月例13 在各项均为正数的等比数列中,若的值. 解:设由等比数列的性质 (找特殊性质项) 和对数的运算性质 得 (合并求和) 第二十二张,PPT共二十五页,创作于2022年6月七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.第二十三张,PPT共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025餐饮联盟经营合同范本
- 2025电商企业劳动合同
- 2025油田合作开发协议合同范本
- 2025企业合同管理中风险防范的关键作用分析
- 2025标准产品买卖合同模板
- 2025购销合同范本内容
- 英语学习革新之道
- 2025技术服务合同范本及样式
- 2025设备抵押借款合同样本
- 安全教育小学
- 租电动车电子合同协议
- 福建省漳州地区校联考2024-2025学年七年级下学期期中考试语文试卷(含答案)
- 2025年便利店店员劳动合同
- GB/T 196-2025普通螺纹基本尺寸
- 2025年陕西省汉中市宁强县中考一模道德与法治试题(含答案)
- 工地分红合同协议
- 变配电工多选试题及答案
- 零售业智能转型:DeepSeek驱动的消费行为分析与推选系统
- 招商引资知识培训课件
- 2025-2030中国菊粉提取物行业市场发展趋势与前景展望战略研究报告
- 商务英语中的语用失误分析论文
评论
0/150
提交评论