2018中考真题-三角函数综合应用专题复习_第1页
2018中考真题-三角函数综合应用专题复习_第2页
2018中考真题-三角函数综合应用专题复习_第3页
2018中考真题-三角函数综合应用专题复习_第4页
2018中考真题-三角函数综合应用专题复习_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-. z.历届三角函数综合题中考真题训练1.(2017) 市*消防支队在一幢居民楼前进展消防演习,如下图,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角CAD=60,求第二次施救时云梯与水平线的夹角BAD的度数结果准确到12.2017如图,一艘船以每小时30海里的速度向北偏东75方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离结果准确到0.1海

2、里,参考数据1.41,1.733.2017黄冈在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD如下图,标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30,在地面的点F处,测得标语牌点A的仰角为75,且点E,F,B,C在同一直线上,求点E与点F之间的距离计算结果准确到0.1米,参考数据:1.41,1.734. 2017随州风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成如图1,图2是从图1引出的平面图假设你站在A处测得塔杆顶端C的仰角是55,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端DD、C、H在

3、同一直线上的仰角是45叶片的长度为35米塔杆与叶片连接处的长度忽略不计,山高BG为10米,BGHG,CHAH,求塔杆CH的高参考数据:tan551.4,tan350.7,sin550.8,sin350.65.2017C919大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是*校航模兴趣小组获得的一数据不完整的航模飞机机翼图纸,图中ABCD,AMBNED,AEDE,请根据图中数据,求出线段BE和CD的长sin370.60,cos370.80,tan370.75,结果保存小数点后一位62018青羊区模拟如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了20

4、0m,缆车行驶的路线与水平夹角=16,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角=42,求缆车从点A到点D垂直上升的距离结果保存整数参考数据:sin160.27,cos160.77,sin420.66,cos420.747. 2017呼和浩特如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小侧A地出发沿与AB成30角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70角,请你用测得的数据求A,B两地的距离AB长结果用含非特殊角的三角函数和根式表示即可8. 2017位于核心景区的贺龙铜

5、像,是我国近百年来最大的铜像铜像由像体AD和底座CD两局部组成如图,在RtABC中,ABC=70.5,在RtDBC中,DBC=45,且CD=2.3米,求像体AD的高度最后结果准确到0.1米,参考数据:sin70.50.943,cos70.50.334,tan70.52.8249. 2017如图,*商店营业大厅自动扶梯AB的倾斜角为31,AB的长为12米,求大厅两层之间的距离BC的长结果准确到0.1米参考数据:sin31=0.515,cos31=0.857,tan31=0.60102016南海是我国的南大门,如下图,*天我国一艘海监执法船在南海海域正在进展常态化巡航,在A处测得北偏东30方向上,

6、距离为20海里的B处有一艘不明身份的船只正在向正向航行,便迅速沿北偏东75的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里最后结果保存整数?参考数据:cos75=0.2588,sin75=0.9659,tan75=3.732,=1.732,=1.41411.2014黔东南州黔东南州*校九年级*班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45,小军站在点D测得旗杆顶端E点的仰角为30,小明和小军相距BD6米,小明的身高AB1.5米,小军的身高CD1.75米,求旗杆的高EF的长结果准确到

7、0.1,参考数据:1.41,1.7312.2012黔东南州如图,一艘货轮在A处发现其北偏东45方向有一海盗船,立即向位于正向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60方向的C处1求海盗船所在C处距货轮航线AB的距离2假设货轮以45海里/时的速度在A处沿正向海警舰靠拢,海盗以50海里/时的速度由C处沿正南方向对货轮进展拦截,问海警舰的速度应为多少时才能抢在海盗之前去救货轮?结果保存根号参考答案及分析(2017)解:延长AD交BC所在直线于点E由题意,得BC=17米,AE=15米,CAE=60,AEB=90,

8、在RtACE中,tanCAE=,CE=AEtan60=15米在RtABE中,tanBAE=,BAE71答:第二次施救时云梯与水平线的夹角BAD约为71【点评】此题考察了解直角三角形的应用,首先构造直角三角形,再运用三角函数的定义解题,构造出直角三角形是解题的关键2.2017【分析】过点C作CEAB于点E,过点B作BDAC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据DAB=30,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度【解答】解:过点C作CEAB于点E,过点B作BDAC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30=20,NAC=4

9、5,NAB=75,DAB=30,BD=AB=10,由勾股定理可知:AD=10BCAN,BCD=45,CD=BD=10,AC=10+10DAB=30,CE=AC=5+513.7答:船在航行过程中与码头C的最近距离是13.7海里【点评】此题考察解三角形的应用,解题的关键是熟练运用锐角三角函数以及勾股定理,此题属于中等题型3.2017黄冈【分析】如图作FHAE于H由题意可知HAF=HFA=45,推出AH=HF,设AH=HF=*,则EF=2*,EH=*,在RtAEB中,由E=30,AB=5米,推出AE=2AB=10米,可得*+*=10,解方程即可【解答】解:如图作FHAE于H由题意可知HAF=HFA=

10、45,AH=HF,设AH=HF=*,则EF=2*,EH=*,在RtAEB中,E=30,AB=5米,AE=2AB=10米,*+*=10,*=55,EF=2*=10107.3米,答:E与点F之间的距离为7.3米【点评】此题考察解直角三角形的应用仰角俯角问题、锐角三角函数、等腰直角三角形的性质、一元一次方程等知识,解题的关键是学会添加常用辅助线,构建方程解决问题4. 2017随州【分析】作BEDH,知GH=BE、BG=EH=10,设AH=*,则BE=GH=43+*,由CH=AHtanCAH=tan55*知CE=CHEH=tan55*10,根据BE=DE可得关于*的方程,解之可得【解答】解:如图,作B

11、EDH于点E,则GH=BE、BG=EH=10,设AH=*,则BE=GH=GA+AH=43+*,在RtACH中,CH=AHtanCAH=tan55*,CE=CHEH=tan55*10,DBE=45,BE=DE=CE+DC,即43+*=tan55*10+35,解得:*45,CH=tan55*=1.445=63,答:塔杆CH的高为63米【点评】此题考察了解直角三角形的应用,解答此题要求学生能借助仰角构造直角三角形并解直角三角形5.2017【分析】在RtBED中可先求得BE的长,过C作CFAE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长【解答】解:BNED,NBD=BDE=37,AE

12、DE,E=90,BE=DEtanBDE18.75cm,如图,过C作AE的垂线,垂足为F,FCA=CAM=45,AF=FC=25cm,CDAE,四边形CDEF为矩形,CD=EF,AE=AB+EB=35.75cm,CD=EF=AEAF10.8cm,答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm【点评】此题主要考察解直角三角形的应用,利用条件构造直角三角形是解题的关键,注意角度的应用6.2018青羊区模拟【分析】此题要求的实际是BC和DF的长度,了AB、BD都是200米,可在RtABC和RtBFD中用、的正切函数求出BC、DF的长【解答】解:RtABC中,斜边AB=200米,=1

13、6,BC=ABsin=200sin1654m,RtBDF中,斜边BD=200米,=42,DF=BDsin=200sin42132,因此缆车垂直上升的距离应该是BC+DF=186米答:缆车垂直上升了186米【点评】此题考察了解直角三角形的应用坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键7. 2017呼和浩特【分析】过点C作CMAB交AB延长线于点M,通过解直角ACM得到AM的长度,通过解直角BCM得到BM的长度,则AB=AMBM【解答】解:过点C作CMAB交AB延长线于点M,由题意得:AC=4010=400米在直角ACM中,A=30,CM=AC=200米,AM=AC=200

14、米在直角BCM中,tan20=,BM=200tan20,AB=AMBM=200200tan20=200tan20,因此A,B两地的距离AB长为200tan20米【点评】此题考察解直角三角形的应用、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型8. 2017【分析】根据等腰直角三角形的性质得出BC的长,再利用tan70.5=求出答案【解答】解:在RtDBC中,DBC=45,且CD=2.3米,BC=2.3m,在RtABC中,ABC=70.5,tan70.5=2.824,解得:AD4.2,答:像体AD的高度约为4.2m【点评】此

15、题主要考察了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键9. 2017【分析】过B作地平面的垂线段BC,垂足为C,构造直角三角形,利用正弦函数的定义,即可求出BC的长【解答】解:过B作地平面的垂线段BC,垂足为C在RtABC中,ACB=90,BC=ABsinBAC=120.5156.2米即大厅两层之间的距离BC的长约为6.2米【点评】此题考察了解直角三角形的应用坡度坡角问题,把坡面与水平面的夹角叫做坡角在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题10.2016【分析】过B作BDA

16、C,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可【解答】解:过B作BDAC,BAC=7530=45,在RtABD中,BAD=ABD=45,ADB=90,由勾股定理得:BD=AD=20=10海里,在RtBCD中,C=15,CBD=75,tanCBD=,即CD=103.732=52.77048,则AC=AD+DC=10+103.732=66.9104867海里,即我海监执法船在前往监视巡查的过程中行驶了67海里【点评】此题考察了解直角三角形的应用方向角问题,熟练掌握直角三角形的性质是解此题的关键11.2014黔东南州【分析】

17、过点A作AMEF于M,过点C作EF于N,则MN=0.25m由小明站在B点测得旗杆顶端E点的仰角为45,可得AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=*m,则=*+6m,EN=*0.25m在RtCEN中,由tanE=,代入、EN解方程求出*的值,继而可求得旗杆的高EF【解答】解:过点A作AMEF于M,过点C作EF于N,MN=0.25m,EAM=45,AM=ME,设AM=ME=*m,则=*+6m,EN=*0.25m,E=30,tanE=,解得:*8.8,则EF=EM+MF8.8+1.5=10.3m答:旗杆的高EF为10.3m【点评】此题考察了解直角三角形的问题该题是一个比拟常规的解直角三角形问题,建立模型比拟简单,但求解过程中涉及到根式和小数,算起来麻烦一些12.2012黔东南州【分析】1由条件可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论