北京市居住建筑采暖空调系统设计-基于建筑气候设计原理工程设计实践毕业设计说明书_第1页
北京市居住建筑采暖空调系统设计-基于建筑气候设计原理工程设计实践毕业设计说明书_第2页
北京市居住建筑采暖空调系统设计-基于建筑气候设计原理工程设计实践毕业设计说明书_第3页
北京市居住建筑采暖空调系统设计-基于建筑气候设计原理工程设计实践毕业设计说明书_第4页
北京市居住建筑采暖空调系统设计-基于建筑气候设计原理工程设计实践毕业设计说明书_第5页
已阅读5页,还剩129页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 毕业设计(论文)北京市居住建筑采暖空调系统设计基于建筑气候设计原理工程设计实践Heating and air conditional system design of residential building in Beijing cityBased on climate considerations in building design学 院(系): 专 业: 学 生 姓 名: 学 号: 指 导 教 师: 评 阅 教 师: 完 成 日 期: 摘 要本设计为北京市某居住建筑采暖空调系统节能设计。除完成建筑环境与设备工程常规设计内容外,还与建筑学院进行联合毕业设计,成立了联合设计小组,其基本要

2、求是最大限度地利用被动式设计手法营造全年室内舒适性热湿环境。首先,本次设计对三栋不同类型(多层、小高层和高层)的建筑进行了负荷计算及特性分析,计算结果表明新风冷负荷与日射得热之和占总冷负荷的一半以上;而冬季通过门窗围护结构传热和冷风渗透形成的热负荷占了大部分比例。经过系统方案论证比较,最终选择多联机空调系统与热水采暖系统相结合。本设计对空调风系统及采暖管道进行了水力计算,并对多联机系统室内机与室外机、新风系统、热回收装置、风机、气流组织、散热器、地板辐射加热管等进行了选择。绘制了空调系统平面布置图及系统图,采暖系统平面布置图及系统图,防排烟系统图等,撰写了设计施工说明书。其次,本次联合设计部分

3、的主要内容是根据北京地区的气候特征,以优先考虑冬季采暖需求设计、其次考虑夏季降温需求为原则,在原有方案的基础上,通过设置附加阳光间、增强通风等被动式策略,使最终方案节能率达到78.3%。最后,本次设计的个人重点是应用了PHPP软件进行不同建筑设计方案全年能量需求的计算,并通过调研,重点研究了建筑节能设计的技术经济比较方法。关键词:建筑气候设计;空调系统设计;联合毕业设计;技术经济分析Heating and air conditional system design of residential building in Beijing cityBased on climate considera

4、tions in building designAbstract This project is a residential building heating and air conditioning system design in Beijing. In addition to the conventional design of the architectural environment and equipment engineering, this project is also a joint graduation design with the School of Architec

5、ture, establishing of a joint design team, whose basic requirement is to maximize the use of passive design techniques to create a full-year indoor comfort heat and moisture environment.Firstly, this project analyzed the load characteristics of three type of buildings, respectively multilayer, small

6、 high-rise and high-rise, and also the result indicated that the new air-cooled load with the insulation heat took up more than half of the total while the heat transfer of doors and windows accounted for most of the proportion in winter. According to the comparison of the system solutions, this pro

7、ject ultimately chose a combination of multi-connected air conditioner system and hot water heating system. This project carried out the hydraulic calculation of the air conditioning duct and the heating pipes, chose the indoor-outdoor set of the multi-connected air conditioner, fresh air system, he

8、at recovery device, blower, air-flow organization, radiator and radiant floor heating pipes, drew the plan of air-conditioning system as well as system drawing, the plan of heating system as well as system drawing, smoke control system drawing and so on, wrote the design construction specification.A

9、lso, according to the climatic characteristics of Beijing region,the main content of the cooperation is to consider the principle of priority to the winter design followed by the summer design and then based on the previous proposals, use the passive strategies such as adding sun room, enhancing ven

10、tilation and so on to make the energy-saving rate of 78.3% finally.Lastly, the design of the personal focus is to use PHPP software for the calculation of the annual energy needs of the different architectural design program and, through research, mainly study the technical and economic comparison o

11、f building.Key Words: Building climate design; HVAC design; Cooperative graduate project; Technical and economic analysis目 录 TOC o 1-3 h z u HYPERLINK l _Toc326581070摘 要 PAGEREF _Toc326581070 h IHYPERLINK l _Toc326581071Abstract PAGEREF _Toc326581071 h IIHYPERLINK l _Toc326581072引 言 PAGEREF _Toc3265

12、81072 h 1HYPERLINK l _Toc326581073第一部分 PAGEREF _Toc326581073 h 2HYPERLINK l _Toc3265810741 建筑概况 PAGEREF _Toc326581074 h 3HYPERLINK l _Toc3265810752 设计原则及内容 PAGEREF _Toc326581075 h 5HYPERLINK l _Toc3265810763 设计计算参数 PAGEREF _Toc326581076 h 6HYPERLINK l _Toc3265810773.1 室外空气计算参数 PAGEREF _Toc326581077

13、h 6HYPERLINK l _Toc3265810783.2 室内设计参数 PAGEREF _Toc326581078 h 6HYPERLINK l _Toc3265810793.3 其他设计参数 PAGEREF _Toc326581079 h 6HYPERLINK l _Toc3265810804 冷负荷、热负荷及湿负荷计算 PAGEREF _Toc326581080 h 7HYPERLINK l _Toc3265810814.1 夏季冷负荷计算 PAGEREF _Toc326581081 h 7HYPERLINK l _Toc3265810824.2 夏季湿负荷计算 PAGEREF _T

14、oc326581082 h 9HYPERLINK l _Toc3265810834.3 冬季热负荷计算 PAGEREF _Toc326581083 h 9HYPERLINK l _Toc3265810844.4 计算结果分析 PAGEREF _Toc326581084 h 10HYPERLINK l _Toc3265810854.4.1 冷负荷结果分析 PAGEREF _Toc326581085 h 10HYPERLINK l _Toc3265810864.4.2 热负荷结果分析 PAGEREF _Toc326581086 h 14HYPERLINK l _Toc3265810875 系统方案

15、选择 PAGEREF _Toc326581087 h 16HYPERLINK l _Toc326581088 冷热源选择 PAGEREF _Toc326581088 h 16HYPERLINK l _Toc326581089 冷源 PAGEREF _Toc326581089 h 16HYPERLINK l _Toc3265810905.1.2 热源 PAGEREF _Toc326581090 h 16HYPERLINK l _Toc3265810915.2 夏季系统方案选择 PAGEREF _Toc326581091 h 16HYPERLINK l _Toc3265810925.2.1 多联机

16、系统论证 PAGEREF _Toc326581092 h 16HYPERLINK l _Toc3265810935.2.2 新风系统论证 PAGEREF _Toc326581093 h 17HYPERLINK l _Toc3265810945.3 冬季系统方案选择 PAGEREF _Toc326581094 h 17HYPERLINK l _Toc3265810956 空调系统设计 PAGEREF _Toc326581095 h 19HYPERLINK l _Toc3265810966.1 多联机系统设计 PAGEREF _Toc326581096 h 19HYPERLINK l _Toc32

17、65810976.1.1 室内机初步选择 PAGEREF _Toc326581097 h 19HYPERLINK l _Toc3265810986.1.2 多联机系统划分 PAGEREF _Toc326581098 h 20HYPERLINK l _Toc326581099 室外机型号初步选择 PAGEREF _Toc326581099 h 20HYPERLINK l _Toc3265811006.1.4 室内外机重新选择 PAGEREF _Toc326581100 h 21HYPERLINK l _Toc3265811016.1.5 多联机系统气流组织设计 PAGEREF _Toc32658

18、1101 h 23HYPERLINK l _Toc3265811026.2 热回收式新风系统设计 PAGEREF _Toc326581102 h 23HYPERLINK l _Toc3265811036.2.1 热回收式新风系统工作原理 PAGEREF _Toc326581103 h 23HYPERLINK l _Toc3265811046.2.2 热回收装置选择 PAGEREF _Toc326581104 h 24HYPERLINK l _Toc3265811056.2.3 新风机组选择 PAGEREF _Toc326581105 h 24HYPERLINK l _Toc3265811066

19、.2.4 新风系统风管的水力计算 PAGEREF _Toc326581106 h 24HYPERLINK l _Toc3265811076.2.5 新风系统送回风口的选择 PAGEREF _Toc326581107 h 25HYPERLINK l _Toc3265811086.3 风机的选择 PAGEREF _Toc326581108 h 26HYPERLINK l _Toc3265811096.4 空调系统冷凝水管道设计 PAGEREF _Toc326581109 h 26HYPERLINK l _Toc3265811107 采暖系统设计 PAGEREF _Toc326581110 h 27

20、HYPERLINK l _Toc3265811117.1 散热器采暖系统设计 PAGEREF _Toc326581111 h 27HYPERLINK l _Toc3265811127.1.1 散热器选择 PAGEREF _Toc326581112 h 27HYPERLINK l _Toc3265811137.1.2 散热器采暖系统水力计算 PAGEREF _Toc326581113 h 28HYPERLINK l _Toc3265811147.1.3 膨胀水箱的选择 PAGEREF _Toc326581114 h 29HYPERLINK l _Toc3265811157.2 低温地板辐射采暖系

21、统设计 PAGEREF _Toc326581115 h 29HYPERLINK l _Toc3265811167.2.1 地板辐射采暖加热管选择与布置 PAGEREF _Toc326581116 h 29HYPERLINK l _Toc3265811177.2.2 地板辐射采暖系统水力计算 PAGEREF _Toc326581117 h 29HYPERLINK l _Toc3265811188 通风及防排烟系统设计 PAGEREF _Toc326581118 h 30HYPERLINK l _Toc3265811198.1 防排烟系统设计 PAGEREF _Toc326581119 h 30H

22、YPERLINK l _Toc3265811208.2 厨房及卫生间通风系统设计 PAGEREF _Toc326581120 h 30HYPERLINK l _Toc326581121第二部分 与建筑学院联合毕业设计 PAGEREF _Toc326581121 h 31HYPERLINK l _Toc3265811229 总体要求 PAGEREF _Toc326581122 h 32HYPERLINK l _Toc32658112310 北京地区气候条件分析 PAGEREF _Toc326581123 h 33HYPERLINK l _Toc32658112411 被动式策略分析 PAGERE

23、F _Toc326581124 h 34HYPERLINK l _Toc32658112512 建筑学院同学方案设计过程及方案分析 PAGEREF _Toc326581125 h 36HYPERLINK l _Toc32658112612.1 联合毕业设计过程 PAGEREF _Toc326581126 h 36HYPERLINK l _Toc32658112712.2 设计各方案比较 PAGEREF _Toc326581127 h 37HYPERLINK l _Toc32658112812.2.1 原方案 PAGEREF _Toc326581128 h 37HYPERLINK l _Toc3

24、2658112912.2.2 方案一 PAGEREF _Toc326581129 h 38HYPERLINK l _Toc32658113012.2.3 方案二 PAGEREF _Toc326581130 h 40HYPERLINK l _Toc32658113112.2.4 方案三 PAGEREF _Toc326581131 h 42HYPERLINK l _Toc32658113212.3 结论 PAGEREF _Toc326581132 h 42HYPERLINK l _Toc326581133第三部分 个人重点 PAGEREF _Toc326581133 h 44HYPERLINK l

25、 _Toc32658113413 用PHPP设计软件进行全年能耗分析 PAGEREF _Toc326581134 h 45HYPERLINK l _Toc32658113513.1 设计软件与常规计算方法比较 PAGEREF _Toc326581135 h 45HYPERLINK l _Toc32658113613.1.1 设计软件计算方法 PAGEREF _Toc326581136 h 45HYPERLINK l _Toc32658113713.1.2 两种计算方法对比 PAGEREF _Toc326581137 h 46HYPERLINK l _Toc32658113813.2 设计软件与

26、常规计算结果比较 PAGEREF _Toc326581138 h 47HYPERLINK l _Toc32658113914 建筑节能设计中的技术经济比较方法 PAGEREF _Toc326581139 h 50HYPERLINK l _Toc326581140结 论 PAGEREF _Toc326581140 h 51HYPERLINK l _Toc326581141参 考 文 献 PAGEREF _Toc326581141 h 52HYPERLINK l _Toc326581142附录A1 冷负荷计算结果 PAGEREF _Toc326581142 h 53HYPERLINK l _Toc

27、326581143附录A2 热负荷计算结果 PAGEREF _Toc326581143 h 90HYPERLINK l _Toc326581144附录B 新风管道水力计算表 PAGEREF _Toc326581144 h 96HYPERLINK l _Toc326581145附录C1 散热器选择计算表 PAGEREF _Toc326581145 h 103HYPERLINK l _Toc326581146附录C2 散热器采暖系统水力计算表 PAGEREF _Toc326581146 h 105HYPERLINK l _Toc326581147附录D1 地板辐射采暖加热管选择计算表 PAGERE

28、F _Toc326581147 h 107HYPERLINK l _Toc326581148附录D2 地板辐射采暖水力计算表 PAGEREF _Toc326581148 h 108HYPERLINK l _Toc326581149附录E 附加阳光间的算法 PAGEREF _Toc326581149 h 127HYPERLINK l _Toc326581150致 谢 PAGEREF _Toc326581150 h 135引 言随着社会的进步、科技的发展以及人口高度集中,进入21世纪,人们将会追求更高的物质文化生活水平,对室内空气品质的要求也更高了,因此对建筑暖通空调的设计与施工我们应该有新的认识

29、。本设计为北京市某居住建筑采暖空调系统节能设计。北京市位于北纬39.8,东经116.47,海拔高度,常年大气压101169Pa,属于寒冷地带。本次设计题目来源于科研项目,设计共分为两个部分。第一部分为建筑环境与设备工程专业常规毕业设计,第二部分为与建筑学院联合毕业设计。其具体目标在于:学习和了解良好的建筑设计与降低设备系统能耗的关联性,体验建筑师与设备工程师合作设计和协调的方法,学习如何充分地利用当地的气候资源条件营造舒适的低能耗生态建筑的方法;提高独自调研、思考与研究的设计创新能力,注重超低能耗建筑系统设计方案,以被动式(利用自然条件和资源)采暖降温方法为主。通过对具有相同建筑设计功能的既有

30、建筑采暖空调系统的设计,提高采暖空调设计过程各个环节的知识理解和应用的水平,掌握国家节能规范及设计条文中相关要点与规定。 本设计为与建筑学院的共同完成的探索性毕业设计,其基本要求是最大限度地利用被动式设计手法营造全年室内舒适性热湿环境。通过进行区域气候分析,了解室外气候条件与人的生理需求之间的关系,了解如何通过建筑设计合理运用气候调控手段。通过参加与建筑学院的联合设计,熟悉了解在不同的建筑设计阶段,通过能耗计算软件的全年能量需求计算,如何尽可能地降低冷热负荷的需求。本设计的个人重点为:学会应用PHPP软件进行不同建筑设计方案全年能量需求的计算及应用天正暖通软件进行施工图设计;通过调研,重点研究

31、建筑节能设计的技术经济比较方法。通过PHPP软件的全年能耗分析,并与建筑学院同组学生进行沟通研究,考虑了合适的设计方案。最终通过分析建筑节能设计中的技术经济比较选定了最终方案。第一部分 建筑环境与设备工程常规毕业设计 本设计来源于工程实例及教育部博士点基金项目-基于建筑气候学理论室内环境自然调节方法的研究中工程实践部分。1 建筑概况本设计包括3栋不同类型的建筑,即多层建筑、小高层建筑和高层建筑,分别编号为1#楼、2#楼和3#楼。1#楼:共3层,一二层为裙房公建部分,三层为住宅部分,建筑高度12m,总建筑面积为m2,公建面积2,住宅面积m2,地下层面积m2;2#楼:共11层,一层为公寓大堂,二至

32、十一层为公寓式房间,建筑高度,总建筑面积2,公建面积2,公寓面积m2,地下层面积2;3#楼:26层,一二层为公建部分,其余为住宅部分,建筑高度,总建筑面积1m2,公建面积 m2,住宅面积 m2,地下层面积 m2。该建筑围护结构说明见表表1.1 建筑围护结构说明名称传热系数外墙聚合物砂浆加强面层外保温1-2-聚苯板90北面及东西面外窗断热铝合金低辐射中空玻璃2南外窗断热铝合金普通中空玻璃北面及东西面外门双层金属门板,中间填充1518厚玻璃棉板2南外门双层金属门板,中间填充1518厚矿棉板屋面非上人屋面-挤塑型聚苯板70设置集中采暖的居住建筑应严格执行民用建筑节能设计标准(采暖居住建筑部分)(JG

33、J2695)。北京市采暖居住建筑各围护结构传热系数不应超过表规定的限制。表1.2 北京市采暖居住建筑各部分围护结构传热系数K限值 W/(m2)屋顶外墙无采暖楼梯间窗户外门地板体型系数体型系数体型系数体型系数隔墙户门接触室外空气无采暖地下室顶板K限值2_从表及表可以看出,本次设计的三栋既有建筑围护结构传热系数均符合民用建筑节能设计标准(采暖居住建筑部分)(JGJ2695),均属于节能设计。2 设计原则及内容本工程采暖空调系统设计根据甲方提供的设计任务书,并参照现行国家颁发的有关规范、标准进行设计,具体有:(1) 采暖通风与空气调节设计规范GB50019-2003(2) 公共建筑节能设计标准GB5

34、00189-2005(3) 实用供热空调设计手册第二版(4) 通风与空调工程施工质量验收规范GB50243-2002(5) 采暖通风与空气调节制图标准GB/T50114-2001(6) 地面辐射供暖技术规程JGJ 142-2004(7) 多联机空调系统工程技术规程JGJ174-2010本工程暖通空调的设计内容主要包括:多联机空调系统设计、散热器采暖系统设计、低温地板辐射采暖系统设计。3 设计计算参数3.1 室外空气计算参数依据采暖通风与空气调节设计规范(GB50019-2003),北京室外计算参数如下:夏季:空调室外计算(干球)温度,空调室外计算(湿球)温度,通风室外计算(干球)温度30,室外

35、平均风速,室外大气压;冬季:空调室外计算(干球)温度,采暖室外计算(干球)温度,通风室外计算(干球)温度,室外平均风速,室外大气压。3.2 室内设计参数 本设计室内设计参数见表。表3.1 室内设计参数主要房间类型夏季室内计算参数冬季室内计算参数干球温度相对湿度%干球温度相对湿度%公建26601860卫生间28601660厨房28601660卧室26601860起居室26601860书房266018603.3 其他设计参数各功能房间其它设计参数见表。表3.2 各功能房间照明等设备功率及人数参数名称数值房间人数10m2/人设备功率10W/m2灯光功率10W/m2新风量30m3/(h人)4 冷负荷、

36、热负荷及湿负荷计算本设计采用冷负荷系数法计算空调设计冷负荷。设计冷负荷主要包括围护结构冷负荷(外墙和屋面瞬变传热引起的冷负荷、外玻璃窗瞬变传热引起的冷负荷、外窗日射得热冷负荷、内围护结构冷负荷),室内热源散热冷负荷(人员、照明散热和设备散热)。根据采暖通风与空气调节设计规范(GB500192003)规定,冬季热负荷包括围护结构的基本耗热量、附加耗热量和通过门窗缝隙的冷风渗透耗热量两部分。围护结构附加耗热量考虑朝向修正、风力附加、高度附加。4.1 夏季冷负荷计算(1)外墙和屋面逐时传热形成的冷负荷在日射和室外气温综合作用下,外墙和屋面逐时传热形成的冷负荷可按下式计算:Qc()=AKKK(Tc()

37、+Td)-Tr (4-1)式中,Qc()外墙和屋面逐时传热形成的冷负荷,W; A 外墙和屋面的面积,m2; K 吸收系数修正值,外墙取,屋面取; K 放热系数修正值,取; K传热系数,外墙0.42W/( m2),屋面为0.44W/( m2); Tc() 冷负荷计算温度的逐时值,; Tr室内计算温度,26; Td 地点修正值,北京为0。(2)外玻璃窗逐时传热形成的冷负荷在室内外温差作用下,通过外玻璃窗传热形成的冷负荷可按下式计算:Qc()= cw K A(Tc()+ Td- Tr) (4-2)式中,Qc()外玻璃窗逐时传热形成的冷负荷,W; A窗口面积,m2; cw外玻璃窗传热系数修正值,双层金

38、属窗框、80%玻璃,取; K 外玻璃窗的传热系数,南向取3.3W/( m2),北东西向取2W/( m2); Tc() 外玻璃窗冷负荷计算温度的逐时值,; Tr室内计算温度,26; Td地点修正值,北京为0。(3)内围护结构逐时传热形成的冷负荷在室内外温差作用下,通过内围护结构传热形成的冷负荷可按下式计算:Qc()= Ki Ai(Tom+ Ta- Tr) (4-3)式中,Qc()内围护结构逐时传热形成的冷负荷,W; Ai窗口面积,m2; Ki 内围护结构的传热系数,内墙1.02W/( m2),内门1.5 W/( m2); Tom夏季空调室外计算日平均温度,北京为2;Ta附加升温,1 Tr室内计算

39、温度,26;(4)外玻璃窗日射得热形成的冷负荷透过玻璃窗进入室内的日射得热形成的逐时冷负荷按下式计算:Qc()= A CaCiCs Dj.max Clq (4-4)式中,Qc()外玻璃窗日射得引起的冷负荷,W; A 窗口面积,m2; Ca外玻璃窗的有效面积系数,双层钢玻璃窗取; Ci 窗内遮阳设施的遮阳系数,设活动百叶内遮阳设施,取; Cs窗玻璃的遮阳系数,双层3mm厚,取;D日射得热因数,W/m2,东西向599,南向302,北向114,; Clq 窗玻璃的冷负荷系数。(5)人员散热引起的冷负荷人员散热引起的冷负荷分为显热负荷和潜热负荷。Qc()Ql+Qq=(Clqqsn+qln ) (4-5

40、)式中,Ql 人体显热散热引起的冷负荷,W; Qq人体潜热散热引起的冷负荷,W; Clq 人体显热散热的冷负荷系数,见暖通空调附录2-23; qs不同室温和劳动性质成年男子显热散热量,W,见暖通空调表2-13; ql 不同室温和劳动性质成年男子潜热散热量,W,见暖通空调表2-13; n 室内全部人数; 群集系数,取; 房间人员逐时在室率,见公共建筑节能设计标准续表。(6)照明及设备散热引起的冷负荷室内照明方式为荧光灯暗装。QcClqn1n2N (4-6)式中,Qc()照明及设备散热引起的冷负荷,W; Clq 照明及设备散热的冷负荷系数; n1镇流器的功率系数,暗装荧光灯取; n2灯罩隔热系数,

41、取; N照明灯具及设备功率,W。(7)新风冷负荷QcMo(ho-hr) (4-7)式中,Qc夏季新风冷负荷,kW;Mo 新风量,kg/s;ho室外空气的焓值,82kJ/kg;hr室内空气的焓值,。夏季冷负荷计算结果见附录A1。4.2 夏季湿负荷计算人体散湿量可按下式计算:mw=0.278ng10-6 (4-8)式中,mw人体散湿量,kg/s;g 成年男子的小时散热量,g/h,见暖通空调表2-13;n 室内全部人数;群集系数,取。4.3 冬季热负荷计算(1)围护结构温差传热形成的热负荷 Qj=KF(tn-tw)a (4-9)式中,Qj通过供暖房间某一面围护结构的基本耗热量, W; K 围护结构的

42、传热系数,W/( m2); F 围护结构的散热面积,m2; tn 室内空气计算温度,; tw室外供暖计算温度,; a温差修正系数,见暖通空调表2-4;(2)附加耗热量 Q1=Qj(1+ch+f)(1+fg) (4-10)式中,Q1考虑各项附加后,围护结构的耗热量,W; Qj 通过供暖房间某一面围护结构的基本耗热量, W; ch 朝向修正率,%,见实用供热空调设计手册表; f风力附加率,%,见实用供热空调设计手册表; fg高度附加率,%,fg =0.02(h-4)15%;(3)门窗缝隙渗入冷空气的耗热量 QicpVw(tn-tw) (4-11)式中,Qi加热门窗缝隙渗入的冷空气耗热量,W; cp

43、空气定压比热,cp=1kJ/(kg); w 采暖室外计算温度下的空气密度,kg/m3; V渗透冷空气量,m3/h; tn室内空气计算温度,; tw室外采暖计算温度,;冬季热负荷计算结果见附录A2。4.4 计算结果分析4.4.1 冷负荷结果分析(1)设计冷负荷逐时分布情况1#楼设计冷负荷逐时分布情况见表及图。表4.1 1#楼设计冷负荷逐时分布情况表时刻冷负荷/W时刻冷负荷/W时刻冷负荷/W0:008:0016:001:009:0017:002:0010:0018:003:0011:0019:004:0012:0020:005:0013:0021:006:0014:0022:007:0015:00

44、23:00图4.1 1 #楼设计冷负荷逐时分布图2#楼设计冷负荷逐时分布情况见表及图。表4.2 2#楼设计冷负荷逐时分布情况表时刻冷负荷/W时刻冷负荷/W时刻冷负荷/W0:008:00112816:001:009:0017:002:0010:0018:003:0011:0019:004:0012:0020:005:0013:0021:006:0014:0014025222:007:0015:0023:00图4.2 2 #楼设计冷负荷逐时分布图3#楼设计冷负荷逐时分布情况见表及图。表4.6 3#楼设计冷负荷逐时分布情况表时刻冷负荷/W时刻冷负荷/W时刻冷负荷/W0:008:0016:001:00

45、9:0017:002:0010:0018:003:0011:00257119:004:0012:0020:005:0013:0021:006:0014:0022:007:0015:0023:00图4.3 3 #楼设计冷负荷逐时分布图由图4.1 图可知:最大设计冷负荷均出现在13:00,因为日射得热在这个时刻比较明显,而日射得热占房间冷负荷的比重很大,故最大设计冷负荷出现在此时刻;5:00时刻设计冷负荷最小,此时围护结构散热形成的冷负荷相对较小,日射得热量也相对较小,故在此时刻出现最小设计冷负荷。(2)设计冷负荷中各分项冷负荷分布情况及其所占比例 设计冷负荷中各项冷负荷分布情况见图图。图4.4

46、1#楼设计冷负荷中各分项冷负荷分布情况图图4.5 2#楼设计冷负荷中各分项冷负荷分布情况图图4.6 3#楼设计冷负荷中各分项冷负荷分布情况图由图4.4图可知:夏季新风冷负荷与日射得热之和占夏季总冷负荷的一半以上。因此,在设计空调系统时,应采用热回收系统来减少新风冷负荷;同时,建筑设计过程中应注意采用遮阳措施和控制窗墙比的方法来减少门窗冷负荷。照明设备冷负荷占了10%以上。因此,设计中应注意自然采光问题。人员冷负荷占10%左右。因此,应该加强通风措施。通过围护结构传热形成的冷负荷也占了10%左右。因此,应注意采用具有保温隔热的材料。4.4.2 热负荷结果分析设计热负荷中各分项热负荷分布情况见图。

47、 图4.7 设计热负荷中各项热负荷分布情况(从左到右分别为1#楼、2#楼、3#楼)由图可知:冷风渗透与门窗耗热量占了冬季热负荷约3/4的比例,因此在设计中应尽量减小窗墙比,并尽可能减少开口设计。外墙和屋面热负荷也占了比较大的比重,故应注意围护结构传热系数的选择。1#楼由于占地面积很大,故地面传热量占了约20%。因此,当建筑占地面积大时,应格外注意地板材料的选择。5 系统方案选择 冷热源选择 冷源通常,空调系统的冷源首先应考虑采用天然冷源。对大、中型空调系统,当无条件采用天然冷源时,可采用人工冷源,即利用制冷机制取冷量,通过冷媒输送至空调系统中。采用人工冷源时,制冷方式的选择应根据建筑物的性质、

48、制冷容量、供水温度、电源、热源和水源等情况,通过技术经济比较来确定。民用建筑应采用电动压缩式和溴化锂吸收式制冷。本设计由于缺乏天然冷源的条件,又属于普通民用建筑,故可采用电动压缩式制冷或溴化锂吸收式制冷。溴化锂吸收式制冷机是以热能为动力,可利用废热、余热等低品位的热能作其热源,以达到变废为利的节能效果。但本设计由于缺乏可利用的热能,故采用电动压缩式制冷。5.1.2 热源冬季采暖一般采用方式有电采暖、空调采暖及热水或蒸汽集中供热采暖。根据建筑区域热源条件,市政管网会提供80/60热水,从节能、安全、经济性及管理等方面综合考虑,选择外网提供的热水集中供热采暖。5.2 夏季系统方案选择 本设计夏季采

49、用多联机+新风系统,具体方案论证如下:5.2.1 多联机系统论证(1)公建部分对于1#楼一二层,2#楼一层及3#楼一二层的公建部分来讲,由于其场所空间大,人员集中,且使用时间一致,故传统来讲一般采用集中式全空气系统。但近几年来,多联机系统已成为了几百到上万平方米空调区域工程中的新型空调方式。本设计选择多联机系统主要是基于以下几点:1.多联机的造价虽然较全空气系统高,但只用“电”这一种能源,不用设置机房就可以解决全部问题;而全空气系统还需专门占用空间设置机房,再加上冷热源机组、空气处理机组等其他设备,全空气系统的经济效益并不比多联机好;2.由于公建部分作出租用,各店铺的使用时间不可能完全一致,或

50、多或少会有差异,如果用多联机系统,室内机可单独控制,则可根据使用者的要求控制室内机的开关,从而减少不必要的能源浪费;3.各出租店铺应实行分别计量、分别计费的原则,以免引起不必要的纠纷,单从这一点上来讲,多联机系统较全空气系统就有明显的优势。(2)住宅部分对于住宅部分来讲,现在家用空调多采用分体式空调,但由于以下原因,本设计采用变频多联机系统:1.舒适性:家用中央空调(变频多联机)解决了分体式空调风直接吹到人身上的缺点,能使室内空气更好的循环起来,房间内各个角落的温差极小,再加上家用中央空调采用了电子膨胀阀技术,能够精确控制房间内的温度变化,大大提升了空调舒适性。2.美观度:一般家庭都采用低静压

51、风管机做侧出下回,其室内机安装在吊顶内,既节省了空间又提升了房间的装修档次。3.节能:家用中央空调采用的是变频压缩机,一般的调频范围都在30%-130%,其压缩机可以根据室内机开启数量及冷量需求来调节转速,避免了大马拉小车现象,相对分体式空调大约能再节能30%-40%。 虽然家用中央空调的成本较高,但从舒适性、美观度、节能等方面来讲,它对于分体式空调确实具有一定的优势,而现在越来越多的住户在选择上已经不局限于价格,而更多的在乎性能方面,故本设计采用变频多联机系统。5.2.2 新风系统论证虽然多联机系统有诸多优势,但其最大的不足就是对新风的处理能力较差,一二层的公建部分由于人员流动量大,使得所需

52、新风量大;而三层由于是住宅,新风需求量小,从节能省钱方面考虑,三层可通过开窗措施来调节新风量。故一二层的空调设计需加上新风系统。本设计采用直接蒸发式全新风空气处理机组,直接将新风处理至室内焓值再通过风口送入室内。5.3 冬季系统方案选择 冬季采暖方式很多,如:地板辐射采暖、空调采暖、散热器采暖等。根据本建筑实际情况,如采用普通空调系统,冬季制热效率低,不节能,且效果不好。若采用热泵等系统设立热源,则会增加成本,经济性不好。采暖通风与空气调节设计规范中提到,累年日平均温度稳定低于或等于5的日数大于或等于90天的地区,宜采用集中采暖。采暖通风与空气调节设计规范中提到,集中供热热源应优先采用城市、区

53、域供热,本建筑有市政热网提供80/60热水。而1#楼地下一层设有换热站,故也可提供50/40热水。经综合考虑,为了便于房间的后续装修,公建部分采用散热器采暖,热源由外网提供,供回水温度80/60;为了营造人体头凉脚暖的热舒适性要求,住宅部分采用分户热计量的低温地板辐射采暖,热源由地下一层的换热站提供,换热站一次侧由外网提供,供回水温度80/60,换热站二次侧供回水温度50/40。6 空调系统设计 第五章对三栋建筑的系统方案进行了论证,现就1#楼进行具体的系统设计。6.1 多联机系统设计6.1.1 室内机初步选择室内机的容量应根据空调区冷负荷来计算。考虑到多联机的使用灵活性,同时考虑间歇使用和临

54、室传热,选择室内机时,室内计算负荷宜放大的系数,本设计选择放大系数。根据附录A1冷负荷计算结果选择美的室内机,具体型号见表。表 室内机初步选择表房间名称型号单台制冷量(kW)单台制热量(kW)台数冷凝管101四面出风嵌入式MDV-D36Q4/N1-C42De32大堂四面出风嵌入式MDV-D36Q4/N1-C41De32103-104四面出风嵌入式MDV-D56Q4/N1-C1De32106四面出风嵌入式MDV-D36Q4/N1-C42De32107四面出风嵌入式MDV-D36Q4/N1-C44De32108四面出风嵌入式MDV-D28Q4/N1-C3De32110-111四面出风嵌入式MDV-

55、D36Q4/N1-C42De32113四面出风嵌入式MDV-D28Q4/N1-C3De32114四面出风嵌入式MDV-D36Q4/N1-C44De32115四面出风嵌入式MDV-D36Q4/N1-C42De32117-118四面出风嵌入式MDV-D56Q4/N1-C1De32120四面出风嵌入式MDV-D36Q4/N1-C42De32楼梯低静压风管天井式MDV-D18Q1/BN11De32201-204四面出风嵌入式MDV-D36Q4/N1-C42De32205四面出风嵌入式MDV-D36Q4/N1-C44De32206四面出风嵌入式MDV-D28Q4/N1-C3De32207四面出风嵌入式M

56、DV-D56Q4/N1-C2De32208四面出风嵌入式MDV-D36Q4/N1-C42De32209四面出风嵌入式MDV-D36Q4/N1-C44De32210-213四面出风嵌入式MDV-D36Q4/N1-C42De32301-312低静压风管天井式MDV-D18Q1/BN11De326.1.2 多联机系统划分多联机系统的划分主要考虑以下几方面:1.室外机容量不超过56kW为宜,配管等效长度不超过80-100m;2.不同朝向、使用时间有差异的房间宜划为同一系统,且同时使用率控制在50%-80%之间,确保系统能在个别房间实际负荷超过计算负荷时保证各室内机的出力;3.满足室内外机的容量配比系数

57、的限制要求,如表;4.室内数量不能超过室外机容许连接的数量,如表;5.尽量将容量相近的室内机划分在同一系统,以利于室内机冷媒流量分配的平衡,使用不频繁的大空间房间宜单独设置系统并宜选用定频式机组,以节省造价。表6.2 室内外机容量配比系数选择参考表同时使用率最大容量配比系数同时使用率最大容量配比系数70%125%-135%80%-90%100%-110%70%-80%110%-125%90%100%表 室内机连接台数参考表室外机容量室内机最大连接台数室外机容量室内机最大连接台数124621507 采暖系统设计7.1 散热器采暖系统设计7.1.1 散热器选择选用钢制柱型散热器,所选钢制柱型散热器

58、综合性能如表。设计供回水温度80/60。散热器连接形式,异侧上进下出。表7.1 钢制柱型散热器综合性能表型号规格高度(mm)宽度(mm)厚度(mm)中心距(mm)散热面积(m2)重量(kg/片)散热量 (W/片)工作压力(Mpa)GZ-3-10-1.01078120601000t散热器的散热面积计算公式:F=Q123/K(tpj-tn) (7-1)式中,Q散热器的散热量,W;K散热器的传热系数,W/( m2);tpj散热器的内热媒平均温度,;tn供暖室内计算温度,;1散热器组装片数修正系数;2散热器连接形式修正系数;3散热器安装形式修正系数;散热器的计算温度:tpj=(tsg-tsh)/2 (

59、7-2)式中,tsg散热器进水温度,;tsh散热器出水温度,;n散热器的总片数;散热器片数:n=F/f (7-3)式中,f每片散热器的散热面积,m2;散热器选择计算表见附录C1。7.1.2 散热器采暖系统水力计算流体输配管网对所输送的流体在数量上要满足一定的流量分配要求。管网中并联管段在资用动力相等时,流动阻力也必然相等。为了保证各管段达到设计预期要求的流量,水力计算中应使并联管段的计算阻力尽量相等,不能超过一定的偏差范围。如果并联管段计算阻力相差太大,管网实际运行时并联管段会自动平衡阻力,此时并联管段的实际流量偏离设计流量也很大,管网达不到设计要求。因此,要对并联管路进行阻力平衡。水力计算的

60、方法:假定流速法。根据各管段的流量,确定各管段的流速和比摩阻,一般的经济比摩阻在60120Pa/m之间。据此,选择各管段的流速和比摩阻,进而得到各个管路的总阻力。本设计散热器采暖系统形式为分区单管串联下供下回式。图7.1 最不利环路示意图最不利环路的水力计算如表所示。表7.2 最不利环路水力计算表管段编号流量流速管径管长比摩阻沿程阻力动压局部阻力系数局部阻力总阻力kg/hm/smmmPa/mPaPaPaPaLg110011610L35852.5701103103L23186.670L11882.45030288401L1-11882.4509928277226H11882.4503028840

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论