六库水电站RCC纵向围堰堰基应力应变及稳定性分析_第1页
六库水电站RCC纵向围堰堰基应力应变及稳定性分析_第2页
六库水电站RCC纵向围堰堰基应力应变及稳定性分析_第3页
六库水电站RCC纵向围堰堰基应力应变及稳定性分析_第4页
六库水电站RCC纵向围堰堰基应力应变及稳定性分析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、六库水电站RCC纵向围堰堰基应力应变及稳定性分析摘要:采用二维和三维非线性有限元分析方法,研究了六库水电站R纵向围堰堰基应力应变状态和稳定性。在此根底上对防渗墙各截面的剪力、轴力和弯矩进展计算研究,提出了配筋方案。计算说明,堰体位移大,堰体与防渗墙接头处附近存在应力集中现象,防渗墙的防渗效果显著,分载作用明显,右防渗墙承受的弯矩更大些,应加大其配筋率。关键词:有限元围堰应力应变防渗墙配筋率StressandStabilityAnalysisfLngitudinalRfferdaFundatinfLiukuHydrperStatinAbstratThestressstateandstabilit

2、yflngitudinalRfferdafundatinfLiukuhydrperstatinarestudiedusing2Dand3Dnn-linearfiniteeleentethd.Thentheshear、axialfreandbendingentfgverningsetinsfanti-seepageallsarestudied.Theresultshsthattheveentffferdaislargeandthestressnentratesinjintffferdaandanti-seepagealls.Besides,leakage-preventinandlad-arry

3、ingapaityfanti-seepageallsaneetengineeringrequireentandthesteelrEinfreentratefrightanti-seepageallshuldbeinreasedduetitslargerbendingent.Keyrdsfiniteeleentethd,fferda,stress,defratin,anti-seepagealls,steelreinfreentrate一工程概况六库水电站坝址区位于云南省怒江州首府六库城上游4.5k处的怒江“U型峡谷中,江水流向由北东转为南西流出坝址。六库水电站为河床式电站。枢纽工程总体呈“一字

4、型布置,主体建筑物由混凝土重力坝、溢流坝、泄洪冲砂闸、主、副厂房等部分组成。纵向碾压混凝土围堰为永久建筑物,工程导流完毕后不再撤除。纵向碾压混凝土围堰左侧设有4孔7.510.0冲砂孔,底板高程798.0,建基面高程794.5。为了满足加固边坡、防止堰基掏刷及根底防渗要求,在堰基部位设置两道钢筋混凝土防渗墙连续墙。纵向围堰堰基座于冲积层上,冲积层厚度为1520,基岩为挤压破碎岩体,厚2530,以散体构造为主。冲积层浸透系数K=27.58/d5.69/d,属强中等透水性。冲积层以下为灰质粉晶白云岩。该地段分布的断层有F4、F5、F2-1,它们和围堰轴线成大角度斜交,呈陡倾角穿过堰基。由于特殊的地质

5、条件和岩层分布,六库水电站纵向碾压混凝土围堰根底稳定是本工程的关键技术问题之一。二有限元分析原理2.1岩体强度与本构模型六库水电站纵向围堰堰基主要由软弱的砂卵砾石层和下伏散体构造组成,其特点是变形和强度力学指标低,易于发生塑性流动和屈服。为此,本次有限元分析采用低抗拉的岩体弹塑性本构模型开展研究。按低抗拉弹塑性模型分析,坝基岩体材料开裂条件用宏观强度描绘:表1岩体物理力学参数表序号岩体代号变模EGPa泊桑比容重t/3抗剪断强度浸透系数fPaK10-7/s1砂卵砾石QAL-20.0480.352.10.5250.014757.02散体构造T2H0.0400.2802.700.3750.0578.

6、73断层0.0400.3502.100.3500.0350.014围堰砼25.00.1672.451.100.9010-65钢筋砼防渗墙26.00.1672.451.100.900.016钢筋砼防渗隔板26.00.1672.451.100.900.017冲砂闸砼25.00.1672.451.100.9010-6825.00.1672.451.100.9010-69垫层砼25.00.1672.451.100.9010-6(i=1,2,3)式中ii表征应力张量三个主应力,分析中可能呈单向、双向及三向开裂情况,由程序自行校核并进展刚度修正。岩体是否进入塑性状态,按Druker-Prager准那么判别

7、:2式中I1和J2分别为应力张量的第一不变量和偏斜应力张量的第二不变量,k是与岩体材料摩擦系数tg和凝聚力有关的常数,由下式计算:3弹塑性矩阵为:4式中:2.2软弱构造面非线性分析模型按层面法向抗拉材料分析,剪切滑移按hr-ulb条件校核:5式中j和tgj分别为软弱夹层抗剪强度参数。对于破碎带宽度较大的断层,按不抗拉弹塑性材料分析,是否进入塑性状态的判别条件仍采用Druker-prager准那么,只是材料摩擦系数和凝聚力改用断层的相应值,本构矩阵仍沿用4式。2.3纵向围堰稳定平安系数计算方法在岩体稳定性分析评价中,常常采用以下三种稳定平安系数评价方法:1点强度储藏平安系数2根底整体抗滑平安系数

8、:包括超载平安系数、强度储藏平安系数以及兼顾超载和强度储藏的综合平安系数。3根底抗滑平安系数的条分法,例如瑞典圆弧法。本次有限元分析以强度储藏法为稳定平安性的主要评价方法,并辅以瑞典圆弧法。强度储藏法计算的根本方法是假定荷载不变,通过逐级下浮岩体强度参数,分析堰基变形破坏演变开展过程与超载倍数的关系,寻求堰基整体滑移时相应的岩体强度参数下浮倍数K,即作为堰基整体抗滑稳定的强度储藏平安系数。三计算模型及计算参数3.1计算模型本次二维计算主要针对六库水电站纵向围堰的四个典型剖面来进展。如图1所示选定坐标系统,X轴平行于纵向围堰轴线,由下游指向上游;Y轴由左岸指向右岸;Z轴铅直向上。图2给出了剖面B

9、的计算范围,Z轴从720取至地表,原点距纵向围堰轴线程度间隔 111.749,程度截取计算范围170。剖面B共计剖分节点541个,单元491个。冲积层、基岩、混凝土采用实体元模拟。在防渗墙与周围基岩间布置了一层10厚夹层单元,以模拟刚度较大的防渗墙与相对软弱的外周基岩间的相对错动。图1纵向围堰有限元计算范围三维网格Y轴横河向由左岸指向右岸,z轴铅直向上,计算范围与二维网格一致。X轴由下游指向上游。如图1所示,共计切剖21个剖面,取顺河向长220。计算模型考虑了5道防渗隔板。共计剖分节点10431个,单元9126个。图3绘出了有限元三维网格立体图。3.2岩体及构造面物理力学参数图2剖面B材料分区

10、图各类岩层物理力学参数计算选用值如表1所示。各类岩体抗拉强度Rt可由hr-ulb准那么导出:其中:为凝聚力,为内摩擦角图3纵向围堰有限元三维网格立体图四研究方案在本次六库水电站纵向围堰堰基稳定分析中,其根本内容包括以下几个部分:1根据质量守恒及达西(Dary)定律,对二维四个典型剖面分别进展汛期和枯期不同工况下的二维渗流场有限元计算以及在汛期工况下的三维渗流场有限元计算。2采用二维、三维线形有限元按弹性本构模型,分别计算堰体自重、堰体自重汛期水头、堰体自重枯期水头工况下四个典型二维剖面和三维情况下的纵向碾压混凝土围堰变形及稳定性。3采用二维非线形有限元按弹塑性本构模型,分别计算和研究堰体自重汛

11、期水头、堰体自重枯期水头工况下四个典型二维剖面分别在逐级下浮岩体强度参数K下的堰基变形破坏演变开展过程及整体稳定平安度。4采用三维非线形有限元按弹塑性本构模型,研究堰体自重汛期水头工况,岩体强度下降K=1.0,1.1,1.2,1.3,1.4,1.8六种方案下的堰基变形破坏演变开展过程及整体稳定平安度。5分别计算四个典型二维剖面在自重、汛期、枯期水载作用下防渗墙及垫层所承受的轴力N,弯矩和剪力Q,对防渗墙及垫层进展配筋设计。五、计算结果与分析5.1渗流分析比照二维和三维渗流分析可知,平面及三维渗流场分析结果所得各剖面水头分布和渗压分布规律相近。均表现为:水头在两道防渗墙处迅速折减;而在砂卵冲积层

12、和基岩那么衰减缓慢。枯期渗压均小于汛期渗压。由渗压分布还可发现,两道防渗墙之间的渗压根本无折减图4。图4剖面B防渗墙汛期渗压分布Pa5.2变位分析堰体挡水后,在水推力和渗压作用下,堰体和根底发生变位。由于堰基岩变模很低E00.040.048Gpa,致使堰体位移量值较大。以剖面B为例,汛期剖面B堰顶节点359向内侧变位-31.97,堰顶沉降-22.86。垫层底部左端节点213向内侧位移-16.86,沉降-29.68;垫层底部右端节点478向内侧位移-16.86,沉降-15.58(如图5所示)。图5剖面B汛期程度向位移uy()5.3应力分析堰体及堰基大主压应力1和小主压应力3随高程降低而增大,在围

13、堰垫层与两道防渗墙的接头处附近存在应力集中现象。剖面B汛期右侧堰踵和左侧堰趾拉应力可达-0.35Pa;垫层中部拉应力可达-0.4Pa。由于两道防渗墙与围岩相比刚度大,纵向围堰的重量和荷载向防渗墙分载,垫层与两道防渗墙的接头处附近存在剪应力集中现象。如图6所示,剖面B汛期右侧堰踵剪应力约0.8Pa;左侧堰趾剪应力约1.3Pa。图6剖面B汛期防渗墙剪应力图Pa防渗墙的分载作用明显,例如自重工况下,剖面左右防渗墙分别承担了225.38吨和210.13吨的重量。左右防渗墙受力不对称,右墙承受更大的弯矩荷载。例如,剖面汛期工况下,右墙墙顶承图7剖面B防渗墙弯矩图自重下受弯矩达1621.26KN,而左侧仅

14、145.92KN。如图7所示,剖面B受左侧开挖,及冲砂孔混凝土的作用,自重工况下,右墙墙顶承受弯矩达2022.6KN,而左侧仅1090.6KN。5.4用强度储藏法分析堰基的变形破坏特征及稳定平安度采用强度储藏法分析坝基稳定平安度时,强度储藏法所提醒的剖面A、B、D破坏机理相似,均是在水推力和渗压作用下,右侧防渗混凝土一侧的基岩首先产生拉剪破坏,然后沿垫层混凝土与砂卵砾石层界面向左侧扩展,破坏面处于建基面附近。表2聚集了剖面AD的采用有限元强度储藏法所得总体抗滑平安系数。对于剖面A和B,还同时给出了瑞典圆弧法的计算结果。表2平安系数汇总表研究方法工况强度储藏法瑞典圆弧法剖面A汛期水位K1.10K

15、1.304枯期水位K2.20Kp1.396剖面B汛期水位K1.80K1.799枯期水位K2.0Kp1.989剖面汛期水位K2.30枯期水位K3.30剖面D汛期水位K2.30枯期水位K3.30三维计算汛期水位K1.80六结论通过有限单元法数值模拟和计算分析,对怒江六库水库R纵向围堰有以下结论:1、剖面AD的水头分布和渗压分布规律相近。均表现为:水头在两道防渗墙处迅速折减;而在砂卵冲积层和基岩那么衰减缓慢。两道防渗墙的防渗效果显著。2、由于地基变模低,堰体位移大,建议对地基进展工程处理,例如灌浆等,进步其抗变形才能。3、建议冲砂孔混凝土与堰体之间设置分缝,以减小应力集中的程度。4、防渗墙的分载作用明显,例如自重工况下,剖面左右防渗墙分别承担了225.38吨和210.13吨的重量。5、由于左右防渗墙受力不对称,右墙承受弯矩荷载更大些,以及由有限元计算可知,垫层混凝土受堰体大体积混凝土的重压,以及两道防渗墙的支撑,导致垫层内承受拉伸和弯曲的结合作用,因此建议加大右侧防渗墙和垫层混凝土的配筋率。参考文献1裴建良,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论