2022届湖北省沙洋县后港高考数学四模试卷含解析_第1页
2022届湖北省沙洋县后港高考数学四模试卷含解析_第2页
2022届湖北省沙洋县后港高考数学四模试卷含解析_第3页
2022届湖北省沙洋县后港高考数学四模试卷含解析_第4页
2022届湖北省沙洋县后港高考数学四模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若实数、满足,则的最小值是( )ABCD2已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D113下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整

2、数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )A16B17C18D194总体由编号为01,02,.,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A23B21C35D325函数在上单调递增,则实数的取值范围是( )ABCD6已知正四面体的内切球体积为v,外接球的体积为V,则( )A4B8C9D277如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为( )ABCD8若函数有两个极值点,则实数的取值范围是( )ABCD9设是双曲线的

3、左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为( )ABCD10已知f(x)=ax2+bx是定义在a1,2a上的偶函数,那么a+b的值是ABCD11已知集合,若,则实数的取值范围为( )ABCD12设M是边BC上任意一点,N为AM的中点,若,则的值为( )A1BCD二、填空题:本题共4小题,每小题5分,共20分。13边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则_.14已知,若的展开式中的系数比x的系数大30,则_15已知,记,则的展开式中各项系数和为_16函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.三、解答题:共70

4、分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且平面()证明:平面平面;()求直线与平面所成角的余弦值.18(12分)在中,内角,所对的边分别是,()求的值;()求的值19(12分)每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:)与网上预约出租车订单数(单位:份);日平均气温()642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该

5、出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.附:回归直线的斜率和截距的最小二乘法估计分别为:20(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,证明:.21(12分)已知矩阵,.求矩阵;求矩阵的特征值.22(10分)在中, 角,的对边分别为, 其中, .(1)求角的值;(2)若,为边上的任意一点,求的最小值.参考答案一、选择题:本题共12小题,每小

6、题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题2B【解析】根据题意计算,解不等式得到答案.【详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【点睛】本题考查了

7、等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.3B【解析】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出 ,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.4B【解析】根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向

8、右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,其中落在编号01,02,39,40内的有:16,26,16,24,23,21,依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.5B【解析】对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.6D【解析】设正四面体的棱长为,取的中点为,连接,

9、作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,在中,由勾股定理得:,解得, 故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.7D【解析】使用不同方法用表示出,结合平面向量的基本定理列出方程解出【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属

10、于基础题8A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.9D【解析】利用向量运算可得,即,由为的中位线,得到,所以,再根据双曲线定义即可求得离心率.【详解】取的中点,则由得,即;在中,为的

11、中位线,所以,所以;由双曲线定义知,且,所以,解得,故选:D【点睛】本题综合考查向量运算与双曲线的相关性质,难度一般.10B【解析】依照偶函数的定义,对定义域内的任意实数,f(x)=f(x),且定义域关于原点对称,a1=2a,即可得解.【详解】根据偶函数的定义域关于原点对称,且f(x)是定义在a1,2a上的偶函数,得a1=2a,解得a=,又f(x)=f(x),b=0,a+b=故选B【点睛】本题考查偶函数的定义,对定义域内的任意实数,f(x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数11A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示

12、,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.12B【解析】设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】取基向量,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得【详解

13、】如图:设,又,且存在实数使得,故答案为:【点睛】本题考查了平面向量数量积的性质及其运算,属中档题142【解析】利用二项展开式的通项公式,二项式系数的性质,求得的值【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题15【解析】根据定积分的计算,得到,令,求得,即可得到答案【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算

14、与求解能力,属于基础题16 【解析】直接计算得到答案,根据题意得到,解得答案.【详解】,故,当时,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()见解析()【解析】()连接交于点,连接,由于平面,得出,根据线线位置关系得出,利用线面垂直的判定和性质得出,结合条件以及面面垂直的判定,即可证出平面平面;()根据题意,建立空间直角坐标系,利用空间向量法分别求出和平面的法向量,利用空间向量线面角公式,即可求出直线与平面所成角的余弦值.【详解】解:()证明:连接交于点,连接,则

15、平面平面,平面,为的中点,为的中点,平面,平面,平面,平面平面()建立如图所示空间直角坐标系,设则,设平面的法向量为,则,取得,设直线与平面所成角为,直线与平面所成角的余弦值为.【点睛】本题考查面面垂直的判定以及利用空间向量法求线面角的余弦值,考查空间想象能力和推理能力.18()()【解析】()根据正弦定理先求得边c,然后由余弦定理可求得边b;()结合二倍角公式及和差公式,即可求得本题答案.【详解】()因为,由正弦定理可得,又,所以,所以根据余弦定理得,解得,;()因为,所以,则【点睛】本题主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,属基础题.19(1),232;(2)【

16、解析】(1) 根据公式代入求解;(2) 先列出基本事件空间,再列出要求的事件,最后求概率即可.【详解】解:(1)由表格可求出代入公式求出,所以,所以当时,.所以可预测日平均气温为时该出租车公司的网约订单数约为232份.(2)记这5天中气温不高于的三天分别为,另外两天分别记为,则在这5天中任意选取2天有,共10个基本事件,其中恰有1天网约订单数不低于210份的有,共6个基本事件,所以所求概率,即恰有1天网约订单数不低于20份的概率为.【点睛】考查线性回归系数的求法以及古典概型求概率的方法,中档题.20(1)见解析;(2)见解析【解析】(1)求得的导函数,对分成两种情况,讨论的单调性.(2)由(1)判断出的取值范围,根据韦达定理求得的关系式,利用差比较法,计算,通过构造函数,利用导数证得,由此证得,进而证得不等式成立.【详解】(1).当时,此时在上单调递减;当时,由解得或,是增函数,此时在和单调递减,在单调递增.(2)由(1)知.,不妨设,令,在上是减函数,即.【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21;,.【解析】由题意,可得,利用矩阵的知识求解即可.矩阵的特征多项式为,令,求出矩阵的特征值.【详解】设矩阵,则,所以,解得,所以矩阵;矩阵的特征多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论