




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二篇 数学物理方程数学物理思想数学物理方程(简称数理方程)是指从物理学及其它各门自然科学、技术科学中所导出的函数方程,主要指偏微分方程和积分方程数学物理方程所研究的内容和所涉及的领域十分广泛,它深刻地描绘了自然界中的许多物理现象和普遍规律.物理规律是代表某物理现象的物理量在空间的分布规律和时间的变化规律。可用u(r,t)表示。物理规律反应的是同一类物理现象遵从的共同规律,具有普遍性。 对于具体问题,由于所处的“环境”或“历史原因”不同,代表同一类物理现象的物理量的具体表达式不同。物理规律的普遍性具体问题的特殊性泛定方程:数学上,数学物理方程本身叫做泛定方程。边界条件:物理量在边界处需满足的关
2、系。初始条件:物理量在一开始的状态值。定解条件:边界条件和初始条件合称为定解条件。定解问题:由泛定方程和定解条件构成的数理问题。几个概念振(波)动是研究源与波、场之间的变化关系热传导、扩散是研究热源与温度场、浓度之间的关系泊松(S. D. Poisson 17811840,法国数学家)方程表示的是静态势(或场)和源分布之间的关系定解问题从物理规律角度来分析,数学物理定解问题表征的是场和产生这种场的源之间的关系第七章 数学物理定解问题7.1 数学建模-数学物理方程的建立具有波动方程的数理方程的建立弦的横振动 杆的纵振动 再讨论定解条件传输线方程 一、波动方程1. 弦的微小横振动考察一根长为且两端
3、固定、水平拉紧的弦讨论如何将这一物理问题转化为数学上的定解问题要确定弦的运动方程,需要明确:确定弦的运动方程 (2)被研究的物理量遵循哪些物理定理?牛顿第二定律. (3)按物理定理写出数学物理方程(即建立泛定方程) 要研究的物理量是什么?弦沿垂直方向的位移 ; 注意: 物理问题涉及的因素较多,往往还需要引入适当假设才能使方程简化 数学物理方程必须反映弦上任一位置上的垂直位移所遵循的普遍规律,所以考察点不能取在端点上,但可以取除端点之外的任何位置作为考察点 根据牛顿第二定律在横向的运动方程可以描述为 (7.1.1) 作用于小段的纵向合力应该为零: (7.1.2) 仅考虑微小的横振动, 夹角为很小
4、的量,忽略及其以上的高阶小量,则根据级数展开式有 注意到: 故由图7.1得这样,(7.1.1)和(7.1.2)简化为(7.1.3)(7.1.4)即为 (7.1.7)上式即为弦作微小横振动的运动方程,简称为弦振动方程 其中讨论:(1)若设弦的重量远小于弦的张力,则上式(7.1.7)右端的重力加速度项可以忽略由此得到下列齐次偏微分方程: (7.1.8) 称式(7.1.8)为弦的自由振动方程。(2) 如果在弦的单位长度上还有横向外力 作用,则式(7.1.8)应该改写为 (7.1.9) 式中称为力密度 ,为时刻作用于处单位质量上的横向外力式(7.1.9)称为弦的受迫振动方程. 3. 传输线方程(电报方
5、程) 在非常长的两条平行传输线的输入端加上交变电源时,等效电路为设传输线上任一点处的电压和电流分别为u(x,t), i(x,t)传输线所满足的方程分别为 (7.1.10) (7.1.11) 式(7.1.10)及(7.1.11)即为一般的传输线方程(或电报方程) 令 无损耗情况下(7.1.12) 上式具有与振动方程类似的数学形式,尽管它们的物理本质根本不同。7.2.1 数学建模稳定场方程类型的建立 1 静电场的电势方程 直角坐标系中泊松方程为 (7.1)若空间中无电荷,即电荷密度,上式成为 (7.8) 称这个方程为拉普拉斯方程. 二、稳定场方程2. 稳定温度分布 导热物体内的热源分布和边界条件不
6、随时间变化 故热传导方程中对时间的偏微分项为零,从而热传导方程即为下列拉普拉斯方程和泊松方程. (7.1.19) (7.1.20)7. 波动方程的定解条件定解条件:初始条件和边界条件1.初始条件 波动方程含有对时间的二阶偏导数,它给出振动过程中每点的加速度要确定振动状态,需知道开始时刻每点的位移和速度 波动方程的初始条件通常是 (7.2.1) 7. 数学物理定解条件2.边界条件 常见的线性边界条件分为三类: 第一类边界条件 直接规定了所研究的物理量在边界上的数值 第二类边界条件 规定了所研究的物理量在边界外法线方向上方向导数的数值 (7.2.2) (7.2.3) 第三类边界条件 规定了所研究的
7、物理量及其外法向导数的线性组合在边界上的数值 (7.2.4) 其中是时间的已知函数,为常系数 第一、二、三类边界条件可以统一地写成 (7.2.5)其中是边界上的变点; 表示物理量沿边界外法线方向的方向导数; 为常数,它们不同时为零 7.3其它边界条件 除了前面我们介绍的第一、第二、第三类边界条件之外,还有其它边界条件,如自然边界条件,衔接条件, 周期性条件 7.2.4 数学物理定解问题的适定性 (1) 解的存在性 看所归结出来的定解问题是否有解; (2) 解的唯一性 看是否只有一个解 (3) 解的稳定性 定解问题来自实际,它的解答也应回到实际中去。应当要求:定解问题解的存在性、唯一性和稳定性统
8、称为定解问题的适定性. 当定解问题的自由项或定解条件有微小变化时,解是否相应地只有微小的变化量 7.2.5 数学物理方程的分类三类典型的数学物理方程双曲型方程波动方程为代表抛物型方程热传导方程为代表椭圆型方程泊松方程为代表退化为拉普拉斯方程 7.2.6 数学物理定解问题的求解方法 1.行波法;2.分离变量法;3.幂级数解法;4.格林函数法; 5.积分变换法;6.保角变换法; 7.变分法;8.计算机仿真解法;9.数值计算法典型综合实例 例 长为的弦在端固定,另一端自由,且在初始时刻时处于水平状态,初始速度为,且已知弦作微小横振动,试写出此定解问题. 【解】 (1)确定泛定方程: 取弦的水平位置为
9、轴,为原点, 弦作自由(无外力)横振动,所以泛定方程为齐次波动方程 (2)确定边界条件 对于弦的固定端,显然有 另一端自由,意味着其张力为零故(3)确定初始条件 根据题意,当时,弦处于水平状态,即初始位移为零 初始速度 综上讨论,故定解问题为历年试题一、填空题 (2010)5、常见的三类数学物理方程根据物理过程可分为 、 和 ;一、填空题 (2009)5. (6分)常见的数学物理方程都是线性二阶偏微分方程,主要有 , 和 三类,对应于数学上的分类,即 , 和 ;四、简述题(2008)3 简述数理方程分析物理问题的步骤以及数理方程、边界条件的分类。(9分)作业: 122页: 第3, 7题; 12
10、8页: 第1, 3题. 7.3 行波法对于常微分方程的求解, 一般是先求方程的通解,而通解中含有任意常数(积分常数), 用初始条件确定这些常数. 本节仿照这个方法求解偏微分方程的定解问题.先求通解(其中含有任意函数)用定解条件确定这些函数波动方程的初值问题(一维)(I)1. 无界弦的自由振动可以改写为作线性变换方程改写为此即为原方程的通解。利用初值条件确定函数f1, f2.其中 为任意一点.达朗贝尔公式把定解问题的解表示为左、右行进波相叠加的方法称为“行波法”。也可写为物理意义:右传播波左传播波例1:解:由达朗贝尔公式2. 无界弦的强迫振动(I)(II)(III)叠加原理定解问题(I)的解是定
11、解问题(II)的解与定解问题(III)的解之和。问题(II)的解可以用达朗贝尔公式来求解。故只须考虑求解问题(III)的解。我们利用齐次化原理来求解问题(III)的解。(在此从略)3. 半无界弦的自由振动我们先考虑情形,即一端 x = 0 固定的振动。希望能利用达朗贝尔公式来求解。为此,我们要作奇延拓为了得到半无界问题的解,只须限制当时,当时,当在 x = 0处有一个自由端,即则需要作偶延拓。例3当当例4:解:由于外力、初始位移以及初始速度均为零,所以弦振动时波传播只是受到边界点x0的影响而向x轴正向传播的右传播波。由此,解具有如下形式根据边界条件确定任意函数 f:令故规定,当 时 达朗贝尔公式的求解过程,与大家熟知的常微分方程的求结果成完全类似。 但遗憾的是,绝大多数偏微分方程很难求出通解;即是求出通解,用定解条件确定其中待定函数往往更为困难。这说明,达朗贝尔公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件设计师考试动手实践训练方法试题及答案
- 云计算与网络安全试题及答案
- 2024年上海海事大学辅导员考试真题
- 2024年江苏省医疗保障局下属事业单位真题
- 2024年绍兴市科学技术局招聘笔试真题
- 2024年内江师范学院选调工作人员笔试真题
- 行政法学历年试题及答案回顾
- 2024年河南郑州经贸学院辅导员招聘笔试真题
- 2024年贵州遵义师范学院招聘笔试真题
- 企业并购的战略风险管理策略试题及答案
- 轨道工程施工课件
- 初学者必看-骨科读片课件
- 25Hz相敏轨道电路
- 银行抢劫预案演练
- 质量工艺问题反馈单模板
- 2022-2023学年人教版选择性必修3 3.4 第1课时 羧酸 学案
- 最全深圳市工改工案例分析
- 高边坡施工危险源辨识及风险评价一览表
- GB∕T 37821-2019 废塑料再生利用技术规范
- 公共场所卫生 可吸入颗粒物PM10 方法验证报告
- 医院景观绿化施工组织计划
评论
0/150
提交评论