




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Will G HopkinsAuckland University of TechnologyAuckland NZQuantitative Data AnalysisSummarizing Data: variables; simple statistics; effect statistics and statistical models; complex models.Generalizing from Sample to Population: precision of estimate, confidence limits, statistical significance, p v
2、alue, errors.Reference: Hopkins WG (). Quantitative data analysis (Slideshow). Sportscience 6, /jour/0201/Quantitative_analysis.ppt (2046 words)定量数据分析第1页Summarizing DataData are a bunch of values of one or more variables.A variable is something that has different values.Values can be numbers or name
3、s, depending on the variable:Numeric, e.g. weightCounting, e.g. number of injuriesOrdinal, e.g. competitive level (values are numbers/names)Nominal, e.g. sex (values are namesWhen values are numbers, visualize the distribution of all values in stem and leaf plots or in a frequency histogram.Can also
4、 use normal probability plots to visualize how well the values fit a normal distribution.When values are names, visualize the frequency of each value with a pie chart or a just a list of values and frequencies.定量数据分析第2页A statistic is a number summarizing a bunch of values.Simple or univariate statis
5、tics summarize values of one variable.Effect or outcome statistics summarize the relationship between values of two or more variables.Simple statistics for numeric variablesMean: the averageStandard deviation: the typical variationStandard error of the mean: the typical variation in the mean with re
6、peated samplingMultiply by (sample size) to convert to standard deviation.Use these also for counting and ordinal variables.Use median (middle value or 50th percentile) and quartiles (25th and 75th percentiles) for grossly non-normally distributed data.Summarize these and other simple statistics vis
7、ually with box and whisker plots.定量数据分析第3页Simple statistics for nominal variablesFrequencies, proportions, or odds.Can also use these for ordinal variables.Effect statisticsDerived from statistical model (equation) of the form Y (dependent) vs X (predictor or independent).Depend on type of Y and X .
8、 Main ones:YXEffect statisticsModel/Testnumericnumericslope, intercept, correlation regressionnumericnominalnominalnominalnominalnumericmean differencefrequency difference or ratiofrequency ratio per t test, ANOVA chi-squarecategorical定量数据分析第4页Model: numeric vs numerice.g. body fat vs sum of skinfol
9、dsModel or test: linear regressionEffect statistics: slope and intercept= parameterscorrelation coefficient or variance explained (= 100correlation2)= measures of goodness of fitOther statistics:typical or standard error of the estimate= residual error= best measure of validity (with criterion varia
10、ble on the Y axis) sum skinfolds (mm)body fat(%BM)定量数据分析第5页Model: numeric vs nominale.g. strength vs sexModel or test: t test (2 groups)1-way ANOVA (2 groups)Effect statistics: difference between meansexpressed as raw difference, percent difference, or fraction of the root mean square error (Cohens
11、effect-size statistic) variance explained or better (variance explained/100)= measures of goodness of fitOther statistics:root mean square error= average standard deviation of the two groupsfemalemalestrengthsex定量数据分析第6页More on expressing the magnitude of the effectWhat often matters is the differen
12、ce between means relative to the standard deviation: strengthfemalesmalesTrivial effect: strengthfemalesmalesVery large effect:定量数据分析第7页Fraction or multiple of a standard deviation is known as the effect-size statistic (or Cohens d).Cohen suggested thresholds for correlations and effect sizes.Hopkin
13、s agrees with the thresholds for correlations but suggests others for the effect size:trivialsmallmoderatelargevery large!0.700.91Hopkins:CorrelationsCohen:00.2Hopkins:04.0Effect Sizes0.2Cohen:0.50.80For studies of athletic performance, percent differences or changes in th
14、e mean are better than Cohen effect sizes.定量数据分析第8页Model: numeric vs nominal (repeated measures)e.g. strength vs trialModel or test: paired t test (2 trials)repeated-measures ANOVA withone within-subject factor (2 trials)Effect statistics: change in mean expressed as raw change, percent change, or f
15、raction of the pre standard deviation Other statistics:within-subject standard deviation (not visible on above plot) = typical error: conveys error of measurementuseful to gauge reliability, individual responses, and magnitude of effects (for measures of athletic performance).prepoststrengthtrial定量数
16、据分析第9页Model: nominal vs nominale.g. sport vs sexModel or test: chi-squared test or contingency tableEffect statistics:Relative frequencies, expressed as a difference in frequencies, ratio of frequencies (relative risk), or ratio of odds (odds ratio)Relative risk is appropriate for cross-sectional or
17、 prospective designs.risk of having rugby disease for males relative to females is (75/100)/(30/100) = 2.5Odds ratio is appropriate for case-control designs.calculated as (75/25)/(30/70) = 7.0femalesmales30%75%rugby yesrugby no定量数据分析第10页Model: nominal vs numerice.g. heart disease vs ageModel or test
18、: categorical modelingEffect statistics:relative risk or odds ratioper unit of the numeric variable(e.g., 2.3 per decade)Model: ordinal or counts vs whateverCan sometimes be analyzed as numeric variables using regression or t testsOtherwise logistic regression or generalized linear modelingComplex m
19、odelsMost reducible to t tests, regression, or relative frequencies.Example age (y)heartdisease(%)0100305070定量数据分析第11页Model: controlled trial (numeric vs 2 nominals)e.g. strength vs trial vs groupModel or test: unpaired t test of change scores (2 trials, 2 groups)repeated-measures ANOVA withwithin-
20、and between-subject factors (2 trials or groups)Note: use line diagram, not bar graph, for repeated measures.Effect statistics: difference in change in mean expressed as raw difference, percent difference, or fraction of the pre standard deviation Other statistics:standard deviation representing ind
21、ividual responses (derived from within-subject standard deviations in the two groups)prepoststrengthtrialdrugplacebo定量数据分析第12页Model: extra predictor variable to control for somethinge.g. heart disease vs physical activity vs ageCant reduce to anything simpler.Model or test:multiple linear regression
22、 or analysis of covariance (ANCOVA)Equivalent to the effect of physical activity with everyone at the same age.Reduction in the effect of physical activity on disease when age is included implies age is at least partly the reason or mechanism for the effect.Same analysis gives the effect of age with
23、 everyone at same level of physical activity.Can use special analysis (mixed modeling) to include a mechanism variable in a repeated-measures model. See separate presentation at .定量数据分析第13页Problem: some models dont fit uniformly for different subjects That is, between- or within-subject standard dev
24、iations differ between some subjects.Equivalently, the residuals are non-uniform (have different standard deviations for different subjects).Determine by examining standard deviations or plots of residuals vs predicteds.Non-uniformity makes p values and confidence limits wrong.How to fixUse unpaired
25、 t test for groups with unequal variances, orTry taking log of dependent variable before analyzing, orFind some other transformation. As a last resort Use rank transformation: convert dependent variable to ranks before analyzing (= non-parametric analysissame as Wilcoxon, Kruskal-Wallis and other te
26、sts).定量数据分析第14页Generalizing from a Sample to a PopulationYou study a sample to find out about the population.The value of a statistic for a sample is only an estimate of the true (population) value.Express precision or uncertainty in true value using 95% confidence limits.Confidence limits represent
27、 likely range of the true value.They do NOT represent a range of values in different subjects.Theres a 5% chance the true value is outside the 95% confidence interval: the Type 0 error rate.Interpret the observed value and the confidence limits as clinically or practically beneficial, trivial, or ha
28、rmful.Even better, work out the probability that the effect is clinically or practically beneficial/trivial/harmful. See .定量数据分析第15页Statistical significance is an old-fashioned way of generalizing, based on testing whether the true value could be zero or null.Assume the null hypothesis: that the tru
29、e value is zero (null).If your observed value falls in a region of extreme values that would occur only 5% of the time, you reject the null hypothesis.That is, you decide that the true value is unlikely to be zero; you can state that the result is statistically significant at the 5% level.If the obs
30、erved value does not fall in the 5% unlikely region, most people mistakenly accept the null hypothesis: they conclude that the true value is zero or null!The p value helps you decide whether your result falls in the unlikely region. If p0.05, your result is in the unlikely region. 定量数据分析第16页One mean
31、ing of the p value: the probability of a more extreme observed value (positive or negative) when true value is zero.Better meaning of the p value: if you observe a positive effect, 1 - p/2 is the chance the true value is positive, and p/2 is the chance the true value is negative. Ditto for a negativ
32、e effect.Example: you observe a 1.5% enhancement of performance (p=0.08). Therefore there is a 96% chance that the true effect is any enhancement and a 4% chance that the true effect is any impairment.This interpretation does not take into account trivial enhancements and impairments.Therefore, if y
33、ou must use p values, show exact values, not p0.05.Meta-analysts also need the exact p value (or confidence limits).定量数据分析第17页If the true value is zero, theres a 5% chance of getting statistical significance: the Type I error rate, or rate of false positives or false alarms.Theres also a chance that
34、 the smallest worthwhile true value will produce an observed value that is not statistically significant: the Type II error rate, or rate of false negatives or failed alarms.In the old-fashioned approach to research design, you are supposed to have enough subjects to make a Type II error rate of 20%: that is, your study is supposed to have a power of 80% to detect the smallest worthwhile effect.If you look at lots of effects in a study, theres an increased chance being wrong about at least one of them.Old-fashioned statisticians like to control this inflation of the Type I error rate wi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 益阳医学高等专科学校《西方影视赏析》2023-2024学年第一学期期末试卷
- 长春东方职业学院《数学物理方法基础》2023-2024学年第一学期期末试卷
- 全球城市迁移趋势-洞察及研究
- 优化信贷审批流程提升民营企业融资效率
- 重庆城市管理职业学院《舞动心理治疗》2023-2024学年第一学期期末试卷
- 广东梅州职业技术学院《审计实务实训》2023-2024学年第一学期期末试卷
- 遂宁职业学院《单证实务》2023-2024学年第一学期期末试卷
- 增强供水安全保障能力实施方案
- 教师培训方案汇报
- 宁夏卫生健康职业技术学院《现当代文学》2023-2024学年第一学期期末试卷
- 公路水运工程施工企业主要负责人和安全生产管理人员考核大纲和模拟试题库1
- 预应力混凝土管桩(L21G404)
- 企业法务概论智慧树知到期末考试答案章节答案2024年温州大学
- 第1课 多姿与多彩(生活色彩)课件-2023-2024学年高中美术人教版(2019)选择性必修1《绘画》
- 海拔高度与气压、空气密度、重力加速度对照表
- 考评员职业道德课件
- 物控培训教程预防呆滞料与库存控制的实用方法
- 天气数据分析与气象预测
- 驾照体检表完整版本
- 核医学工作中辐射防护知识课件
- 审评茶培训课件
评论
0/150
提交评论