




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Static DictionariesCollection of items.Each item is a pair.(key, element)Pairs have different keys.Operations are:initialize/createget (search)Each item/key/element has an estimated access frequency (or probability).Consider binary search tree only.ExampleKeyProbabilitya0.8b0.1c0.1abca b cCost = 0.8
2、 * 2 + 0.1 * 1 + 0.1 * 2 = 1.9abcCost = 0.8 * 1 + 0.1 * 2 + 0.1 * 3 = 1.2Search TypesSuccessful.Search for a key that is in the dictionary.Terminates at an internal node.Unsuccessful.Search for a key that is not in the dictionary.Terminates at an external/failure node.f0abcf1f2f3Internal And Externa
3、l NodesA binary tree with n internal nodes has n + 1 external nodes.Let s1, s2, , sn be the internal nodes, in inorder.key(s1) key(s2) key(sn).Let key(s0) = infinity and key(sn+1) = infinity.Let f0, f1, , fn be the external nodes, in inorder.fi is reached iff key(si) search key key(si+1).f0abcf1f2f3
4、Cost Of Binary Search TreeLet pi = probability for key(si).Let qi = probability for key(si) search key key(si+1).Sum of ps and qs = 1.Cost of tree = S0 = i = n qi (level(fi) 1) + S1= i = n pi * level(si)Cost = weighted path length.f0abcf1f2f3Brute Force AlgorithmGenerate all binary search trees with
5、 n internal nodes.Compute the weighted path length of each.Determine tree with minimum weighted path length.Number of trees to examine is O(4n/n1.5).Brute force approach is impractical for large n.Dynamic ProgrammingKeys are a1 a2 an.Let Ti j= least cost tree for ai+1, ai+2, , aj.T0n= least cost tre
6、e for a1, a2, , an.a3a5a6a7a4f2f3f5f4f7f6Ti j includes pi+1, pi+2, , pj and qi, qi+1, , qj.T2,7Ti j= least cost tree for ai+1, ai+2, , aj.ci j= cost of Ti j = Si = u = j qu (level(fu) 1) + Si u = j pu * level(su).ri j= root of Ti j.wi j= weight of Ti j = sum of ps and qs in Ti j = pi+1+ pi+2+ + pj +
7、 qi + qi+1 + + qjTerminologyi = jTi j includes pi+1, pi+2, , pj and qi, qi+1, , qj.Ti i includes qi only.fiTiici i = cost of Ti i = 0.ri i = root of Ti i = 0.wi i = weight of Ti i = sum of ps and qs in Ti i = qii jTi j= least cost tree for ai+1, ai+2, , aj.Ti j includes pi+1, pi+2, , pj and qi, qi+1
8、, , qj.Let ak, i k = j, be in the root of Ti j.akLRTi jL includes pi+1, pi+2, , pk-1 and qi, qi+1, , qk-1.R includes pk+1, pi+2, , pj and qk, qk+1, , qj.cost(L)L includes pi+1, pi+2, , pk-1 and qi, qi+1, , qk-1.cost(L) = weighted path length of L when viewed as a stand alone binary search tree.LCont
9、ribution To cijci j = Si = u = j qu (level(fu) 1) + Si u = j pu * level(su).When L is viewed as a subtree of Ti j , the level of each node is 1 more than when L is viewed as a stand alone tree. So, contribution of L to cij is cost(L) + wi k-1.LakLRTi jcijContribution of L to cij is cost(L) + wi k-1.
10、Contribution of R to cij is cost(R) + wkj.cij = cost(L) + wi k-1 + cost(R) + wkj + pk = cost(L) + cost(R) + wijakLRTi jcijcij = cost(L) + cost(R) + wijcost(L) = cik-1cost(R) = ckjcij = cik-1 + ckj + wijDont know k.cij = mini k = jcik-1 + ckj + wijakLRTi jcijcij = mini k = jcik-1 + ckj + wijrij = k t
11、hat minimizes right side.akLRTi jComputation Of c0n And r0nStart with ci i = 0, ri i = 0, wi i = qi, 0 = i = n (zero-key trees).Use cij = mini k = jcik-1 + ckj + wij to compute cii+1, ri i+1, 0 = i = n 1 (one-key trees).Now use the equation to compute cii+2, ri i+2, 0 = i = n 2 (two-key trees).Now use the equation to compute cii+3, ri i+3, 0 = i = n 3 (three-key trees).Continue until c0n and r0n(n-key tree) have been computed.Computation Of c0n And r0ncij, rij, i = j1234123400Complexity cij = mini k = jcik-1 + ckj + wij O(n) time to compute one cij. O(n2) cijs to compute.Total time is O(n3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目实施的法律风险试题及答案
- 2025-2026学年贵州省六盘水市水城县三年级数学第一学期期末试题含解析
- 简单建筑概念分析课件
- 公共关系的信息传播影响力试题及答案
- 公共关系常见技巧试题及答案
- 行政管理专业的趋势公共关系学试题及答案
- 项目管理工具应用试题及答案
- 膀胱结石术后健康教育
- 食品和饮用水安全教育
- 经济师考试常考题型试题及答案
- 2024年延安通和电业有限责任公司招聘考试真题
- 济南市工程咨询院招聘笔试真题2024
- 2025年中国矿山支护设备行业市场规模及投资前景预测分析报告
- 新形势下如何抓好“两个经常性”工作
- 监控立杆采购合同协议
- 中国美术史高中课件
- 贴改色膜合同协议
- 清理罐车合同协议
- 新团员培训第一课:青年你为什么要入团
- 电工比武大赛试题及答案
- 邮政储蓄大堂引导员培训
评论
0/150
提交评论