




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【若缺失公式、图片现象属于系统读取不能功,文档内容齐备完满,请放心下载。】期末卷(1)一选择题1以下说法正确的选项是()A为认识2016年春节联欢晚会收视情况,应采用全面检查方式B为认识全国中学生的视力情况,应采用普查方式C乘坐高铁时,检查旅客行李可否携带有违禁物品应采用抽样检查方式D为认识2016年春节中国人最喜欢的过年方式应采用抽样检查方式2某厂生产纪念章10万个,质检科为检测这批纪念章质量的合格情况从中随机抽查500个,合格498个,以下说法正确的选项是()A整体是10万个纪念章,样本是500个纪念章B整体是10万个纪念章,样本是498个纪念章C整体是500万个纪念章,样本是500个纪念
2、章D整体是10万个纪念章,样本是2个纪念章3请指出以下抽样检查中,样本缺乏代表性的个数是()检查一个班级里学号为3的倍数的学生,认识学生对班主任某一新举措的建议;在十个城市的十所中学里检查我国城市学生的视力情况;为了察看“6是”否是最难掷出的一个数,小华掷了6次骰子;在某一乡村小学里抽查100名学生,检查我国小学生的健康情况A1B2C3D44为了估计水塘中的鱼数,养鱼者第一从鱼塘中捕获30条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘再从鱼塘中打捞200条鱼,若是在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为()A3000条B2200条C1200条D600条5如表所示,是中国奥运
3、健儿在奥运会中获得的奖牌的情况,为了更清楚地看出获得奖牌情况是上涨仍是下降,应采用()1届数232425262728奖牌数322854505963A条形统计图B折线统计图C扇形统计图D以上都对6如图是某班全体学生出门时乘车、步行、骑车的人数散布直方图和扇形散布图(两图都不完满),则以下结论中错误的选项是()A该班总人数为50人B骑车人数占总人数的20%C步行人数为30人D乘车人数是骑车人数的2.5倍7如图为某校782名学生小考成绩的次数分派直方图,若以下有一选项为图(一)成绩的累积次数分派直方图,则此图为何()2ABCD8袋子中装有2个黑球和3个白球,这些球除了颜色不同样外形状、大小、质地等完
4、满同样,在看不到球的条件下,随机地一次从袋子中摸出三个球以下事件是必定事件的是()A摸出的三个球中最罕有一个球是白球B摸出的三个球中最罕有一个球是黑球C摸出是三个球中最罕有两个球的黑球D摸出的单个球中最罕有两个球是白球9以以下图形中,能够看作是中心对称图形的是()ABCD10如图,平行四边形ABCD中,AE均分BAD,交BC于点E,且AB=AE,延伸AB与DE的延伸线交于点F以下结论中:ABCEAD;ABE是等边三角形;AD=AF;3SABE=SCDE;SABE=SCEF其中正确的选项是()ABCD11以下分式中是最简分式的是()ABCD二填空题12两名同学在检查时使用下面的两种提问方式,(1
5、)莫非你不认为科幻片比武打片更成心思吗?(2)你更喜欢哪一类电影,科幻片仍是武打片?你认为更好些?原因是:;(2)13已知x+y=2,xy=5,则=14若x+y=1,且x0,则(x+)的值为15小李和小王分别从甲乙两地同时出发,相向而行当小李走完满程的一半时,小王才走了16千米;而当小王走完满程的一半时,小李已走了25千米那么当小李走完满程时小王未走完的行程是千米若函数21)是反比率函数,则a的值是;若该函数是16y=(a4正比率函数,则a的值是17如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将?ABCO绕点A逆时针旋转获得?ADEF,AD经过点O,点F碰巧落在
6、x轴的正半轴上,若点D在反比率函数y=(x0)的图象上,则k的值为三解答题18计算:(1)23(2)(3)()(4)(a、b0)19计算:(1)(2)(3)(4)(5)20先察看以下的计算,再达成:5(1);请你直接写出下面的结果:=;=;(2)依照你的猜想、概括,运用规律计算:21两个反比率函数和在第一象限内的图象以以下图,点P在的图象上,PCx轴于点C,交的图象于点A,PDy轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:ODB与OCA的面积相等四边形PAOB的面积不会发生变化;PA与PB向来相等;当点A是PC的中点时,点B必然是PD的中点其中必然正确的选项是(把你认为正确结论
7、的序号都填上,少填或错填不给分)22如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是该直线与双曲线y=的一个交点,过点C作CD垂直y轴,垂足为D,且SBCD=1(1)求双曲线的剖析式(2)设直线与双曲线的另一个交点为E,求点E的坐标623如图,正方形ABCD的边CD在正方形ECGF的边CE上,连结BE、DG(1)若ED:DC=1:2,EF=12,试求DG的长(2)察看猜想BE与DG之间的关系,并证明你的结论24如图,ABC中,B=90,点M在AB上,AM=BC,作正方形CMDE,连结AD(1)求证:AMDBCM(2)点N在BC上,CN=BM,连结AN交CM于点P,试求CPN
8、的大小(3)在(2)的条件下,已知正方形CMDE的边长为3,AP=2PN,求AB的长25某师范大学为认识该校数学系1000名大学生每学期参加社会实践活动的时间,随机对该系50名大学生进行了检查,结果以下表:7时间45678910111213(天)人数12457118642并绘制了以下的频数散布表和频数散布直方图分组频数频次3.55.530.065.57.50.187.59.5180.369.511.513.560.1211.5共计501依照以上供应的信息,解答以下问题:(1)补全频数散布表(2)补全频数散布直方图(3)请你估计这所大学数学系的学生中,每学期参加社会实践活动的时间很多于天的大概有
9、多少人?26为了认识我县初中学生体育活动情况,随机检查了720名八年级学生,检查内容是:“每日锻炼可否高出1小时及未高出1小时的原因”,利用所得的数据制成了扇形统计图和频数散布直方图依照图示,解答以下问题:(1)若在被检查的学生中随机选出一名学生测试其体育成绩,选出的是“每日锻炼高出1小时”的学生的概率是多少?没“时间”锻炼的人数是多少?并补全频数散布直方图;(3)2012年我县八年级学生约为1.2万人,按此检查,能够估计2012年我县八年8级学生中每日锻炼未高出1小时的学生约有多少万人?27某中学张开“绿化家乡、植树造林”活动,为认识全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了检
10、查,将收集的数据整理并绘制成图1和图两幅尚不完满的统计图,请依照图中的信息,达成以下问题:(1)这四个班共植树棵;(2)请你在答题卡上不全两幅统计图;(3)求图1中“甲”班级所对应的扇形圆心角的度数;(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?28如图是我市某校八年级学生为贫困山区学生捐钱情况抽样检查的条形图和扇形统计图(1)求本次抽样的学生有多少人;9(2)在扇形统计图中,求该样本中捐钱15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐钱总数29如图,在平行四边形ABCD中,CE均分BCD,交AB边于
11、点E,EFBC,交CD于点F,点G是BC边的中点,连结GF,且1=2,CE与GF交于点M,过点M作MHCD于点H(1)求证:四边形BCFE是菱形;(2)若CH=1,求BC的长;(3)求证:EM=FG+MH30如图,等边ABC的边长为8,动点M从点B出发,沿BACB的方向以3cm/s的速度运动,动点N从点C出发,沿CABC方向以2cm/s的速度运动(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点抵达终点时,另一点即停止运动那么运动到第几秒钟时,点A、M、N以及ABC的边上一点D恰能组成一个平行四边形?求出时间t并请指出此时点D的详细地点1011答案一选
12、择题1以下说法正确的选项是()A为认识2016年春节联欢晚会收视情况,应采用全面检查方式B为认识全国中学生的视力情况,应采用普查方式C乘坐高铁时,检查旅客行李可否携带有违禁物品应采用抽样检查方式D为认识2016年春节中国人最喜欢的过年方式应采用抽样检查方式【考点】V2:全面检查与抽样检查【专题】选择题【难度】易【剖析】由普查获得的检查结果比较正确,但所费人力、物力和时间很多,而抽样检查获得的检查结果比较近似【解答】解:A、为认识2016年春节联欢晚会收视情况,检查范围广,应采用抽样检查方式,故A错误;B、为认识全国中学生的视力情况,检查范围广,应采用抽样方式,故B错误;C、乘坐高铁时,检查旅客
13、行李可否携带有违禁物品应采用全面检查方式,故C错误;D、为认识2016年春节中国人最喜欢的过年方式应采用抽样检查方式,故D正确;应选:D【议论】本题察看了抽样检查和全面检查的差异,选择普查仍是抽样检查要依照所要察看的对象的特点灵便采用,一般来说,关于拥有损坏性的检查、无法进行普查、普查的意义或价值不大,应选择抽样检查,关于精准度要求高的检查,事关重要的检查经常采用普查2某厂生产纪念章10万个,质检科为检测这批纪念章质量的合格情况从中随机抽查500个,合格498个,以下说法正确的选项是()A整体是10万个纪念章,样本是500个纪念章B整体是10万个纪念章,样本是498个纪念章C整体是500万个纪
14、念章,样本是500个纪念章D整体是10万个纪念章,样本是2个纪念章12【考点】V3:整体、个体、样本、样本容量【专题】选择题【难度】易【剖析】依照整体、个体的含义:我们把所要察看的对象的全体叫做整体;把组成整体的每一个察看对象叫做个体;可得整体是10万个纪念章,样本是500个纪念章,据此解答即可【解答】解:依照整体、个体的含义,可得整体是10万个纪念章,样本是500个纪念章应选:A【议论】本题主要察看了整体、个体、样本、样本容量,要熟练掌握,解答本题的重点是要明确:整体:我们把所要察看的对象的全体叫做整体;个体:把组成整体的每一个察看对象叫做个体;样本:从整体中取出的一部分个体叫做这个整体的一
15、个样本;样本容量:一个样本包括的个体数量叫做样本容量3请指出以下抽样检查中,样本缺乏代表性的个数是()检查一个班级里学号为3的倍数的学生,认识学生对班主任某一新举措的建议;在十个城市的十所中学里检查我国城市学生的视力情况;为了察看“6是”否是最难掷出的一个数,小华掷了6次骰子;在某一乡村小学里抽查100名学生,检查我国小学生的健康情况A1B2C3D4【考点】V4:抽样检查的可靠性【专题】选择题【难度】易【剖析】抽取样本注意事项就是要考虑样本拥有宽泛性与代表性,所谓代表性,就是抽取的样本必定是随机的,即各个方面,各个层次的对象都要有所表现【解答】解:拥有代表性不能够只用中学的视力情况来说明城市学
16、生的视力情况样不拥有宽泛性;是个概率问题,不是抽样检查;乡村小学里小学生的健康情况与城市的小学生的健康情况不同样,生活条件和环境都有影响,所以也缺乏代表性故样本缺乏代表性是和两个13应选B【议论】在抽样检查中,所抽取的样本必定拥有宽泛性和代表性,才能很好地反应整体的情况4为了估计水塘中的鱼数,养鱼者第一从鱼塘中捕获30条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘再从鱼塘中打捞200条鱼,若是在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的条数可估计为()A3000条B2200条C1200条D600条【考点】V5:用样本估计整体【专题】选择题【难度】易【剖析】第一求出有记号的5条鱼在200条鱼
17、中所占的比率,尔后依照用样本中有记号的鱼所占的比率等于鱼塘中有记号的鱼所占的比率,即可求得鱼的总条数【解答】解:100%=2.5%302.5%=1200应选C【议论】本题察看了统计中用样本估计整体的思想5如表所示,是中国奥运健儿在奥运会中获得的奖牌的情况,为了更清楚地看出获得奖牌情况是上涨仍是下降,应采用()届数232425262728奖牌数322854505963A条形统计图B折线统计图C扇形统计图D以上都对【考点】VE:统计图的选择【专题】选择题【难度】易【剖析】条形统计图能很简单看出数量的多少;折线统计图不只简单看出数量的多少,而且能反应数量的增减变化情况;扇形统计图能反应部分与整体的关
18、系;由此依照情况选择即可【解答】解:了更清楚地看出获得奖牌情况是上涨仍是下降,应采用折线统计图,14应选B【议论】本题应依照条形统计图、折线统计图、扇形统计图各自的特点进行解答6如图是某班全体学生出门时乘车、步行、骑车的人数散布直方图和扇形散布图(两图都不完满),则以下结论中错误的选项是()A该班总人数为50人B骑车人数占总人数的20%C步行人数为30人D乘车人数是骑车人数的2.5倍【考点】V8:频数(率)散布直方图;VB:扇形统计图【专题】选择题【难度】易【专题】27:图表型【剖析】由条形图与扇形图的意义,剖析可得乘车的人有25人,占总数的50%;骑车的人有10人,占总人数的20%;作比可得
19、答案【解答】解:由条形图中可知乘车的人有25人,骑车的人有10人,在扇形图中剖析可知,乘车的占总数的50%,所以总数有2550%=50人,所以骑车人数占总人数的20%;步行人数为050=15人;乘车人数是骑车人数的2.5倍应选C【议论】本题察看扇形统计图及有关计算在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360比7如图为某校782名学生小考成绩的次数分派直方图,若以下有一选项为图(一)成绩的累积次数分派直方图,则此图为何()15ABCD【考点】V8:频数(率)散布直方图【专题】选择题【难度】易【剖析】将一个变量的不同样样级的相对频数用矩形块标绘的图表(每一矩形的
20、面积对应于频数)由于本题求哪个是成绩的累积次数分派直方图,故累计次数做为纵坐标【解答】解:重点知道,分数是横坐标,累计次数是纵坐标,切合题意的是A应选A【议论】本题察看频数直方图的画法以及对横纵坐标要求的理解才能够正确选出答案8袋子中装有2个黑球和3个白球,这些球除了颜色不同样外形状、大小、质地16等完满同样,在看不到球的条件下,随机地一次从袋子中摸出三个球以下事件是必定事件的是()A摸出的三个球中最罕有一个球是白球B摸出的三个球中最罕有一个球是黑球C摸出是三个球中最罕有两个球的黑球D摸出的单个球中最罕有两个球是白球【考点】X1:随机事件【专题】选择题【难度】易【剖析】必定事件就是必然发生的事
21、件,依照定义即可作出判断【解答】解:A、是必定事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误应选A【议论】察看了必定事件,解决本题需要正确理解必定事件、不能能事件、随机事件的见解必定事件指在必然条件下必然发生的事件不能能事件是指在必然条件下,必然不发生的事件不确定事件即随机事件是指在必然条件下,可能发生也可能不发生的事件9以以下图形中,能够看作是中心对称图形的是()ABCD【考点】R5:中心对称图形【专题】选择题【难度】易【剖析】依照中心对称图形的见解求解【解答】解:A、不是中心对称图形,由于找不到任何这样的一点,旋转180度后它的两部分能够重合;即不知足中
22、心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;17C、不是中心对称图形,由于找不到任何这样的一点,旋转180度后它的两部分能够重合;即不知足中心对称图形的定义,故此选项错误;D、不是中心对称图形,由于找不到任何这样的一点,旋转180度后它的两部分能够重合;即不知足中心对称图形的定义,故此选项错误应选:B【议论】本题主要察看了中心对称图形的见解:中心对称图形是要搜寻对称中心,旋转180度后两部分重合10如图,平行四边形ABCD中,AE均分BAD,交BC于点E,且AB=AE,延伸AB与DE的延伸线交于点F以下结论中:ABCEAD;ABE是等边三角形;AD=AF;SABE=SCD
23、E;SABE=SCEF其中正确的选项是()ABCD【考点】L5:平行四边形的性质;KB:全等三角形的判断;KL:等边三角形的判定【专题】16:压轴题【剖析】由四边形ABCD是平行四边形,可得ADBC,AD=BC,又由于AE均分BAD,可得BAE=DAE,所以可得BAE=BEA,得AB=BE,由AB=AE,获得ABE是等边三角形,则ABE=EAD=60,所以ABCEAD(SAS);由于FCD与ABD等底(AB=CD)等高(AB与CD间的距离相等),所以SFCD=SABD,又由于AEC与DEC同底等高,所以SAEC=SDEC,所以SABE=SCEF18【解答】解:四边形ABCD是平行四边形,ADB
24、C,AD=BC,EAD=AEB,又AE均分BAD,BAE=DAE,BAE=BEA,AB=BE,AB=AE,ABE是等边三角形;正确;ABE=EAD=60,AB=AE,BC=AD,ABCEAD(SAS);正确;FCD与ABC等底(AB=CD)等高(AB与CD间的距离相等),SFCD=SABC,又AEC与DEC同底等高,SAEC=SDEC,SABE=SCEF;正确若AD与AF相等,即AFD=ADF=DEC即EC=CD=BE即BC=2CD,题中未限制这一条件不用然正确;应选C【议论】本题察看了平行四边形的性质、等边三角形的判断与性质、全等三角形的判断与性质本题比较复杂,注意将每个问题认真剖析11以下
25、分式中是最简分式的是()ABCD19【考点】68:最简分式【专题】选择题【难度】易【剖析】最简分式的标准是分子,分母中不含有公因式,不能够再约分判断的方法是把分子、分母分解因式,而且察看有无互为相反数的因式,这样的因式能够经过符号变化化为同样的因式进而进行约分【解答】解:A、的分子、分母都不能够再分解,且不能够约分,是最简分式;B、;C、=;D、;应选A【议论】分式的化简过程,第一要把分子分母分解因式,互为相反数的因式是比较易忽略的问题在解题中必然要惹起注意二填空题12两名同学在检查时使用下面的两种提问方式,(1)莫非你不认为科幻片比武打片更成心思吗?(2)你更喜欢哪一类电影,科幻片仍是武打片
26、?你认为更好些?原因是:;(2)【考点】V1:检查收集数据的过程与方法【专题】填空题【难度】中【剖析】检查提问不能够给回答者以表示,简单让人接受,据此即可回答【解答】解:(2)更好些;原因是:(1)的提问方式带有个人的见解,拥有强迫别人的意思;(2)的提问方式不带个人见解,切合一般人的心理,简单被人接受【议论】本题主要察看了检盘问卷中设计问题的方法,是需要熟记的问题2013已知x+y=2,xy=5,则=【考点】6B:分式的加减法【专题】填空题【难度】中【剖析】先通分化简,整理出汗已知条件的形式的分式,代入求值即可【解答】解:=当x+y=2,xy=5时,原式=故答案为【议论】解决这类求值题时,应
27、先察看题目的特点,就本题而言,若是想经过已知条件求出x、y的值再代入,可能比较困难,所以应试虑利用转变及整体思想解题14若x+y=1,且x0,则(x+)的值为【考点】6D:分式的化简求值【专题】填空题【难度】中【剖析】先把括号里面的式子进行因式分解,再把除法转变成乘法,再进行约分,尔后把x+y的值代入即可【解答】解:(x+)=x+y,把x+y=1代入上式得:原式=1;故答案为:1【议论】本题察看了分式的化简求值,解答本题的重点是把分式化到最简,尔后辈值计算2115小李和小王分别从甲乙两地同时出发,相向而行当小李走完满程的一半时,小王才走了16千米;而当小王走完满程的一半时,小李已走了25千米那
28、么当小李走完满程时小王未走完的行程是千米【考点】B7:分式方程的应用【专题】填空题【难度】中【专题】12:应用题;16:压轴题【剖析】设全程x千米,小李速度为a千米/小时,小王速度为b千米/小时,时间=,以时间做为等量关系列方程,尔后经过等量代换求出x,最后求出要求的结果【解答】解:设全程x千米,小李速度为a千米/小时,小王速度为b千米/小时,则=,=所以=解得x=40或x=40(舍去)所以当小李走完满程时小王未走完的行程是x=40=8(千米)故答案为:8【议论】本题察看理解题意的能力,重点是设出三个未知数,其中两个能消去,进而求出解若函数21)是反比率函数,则a的值是;若该函数是16y=(a
29、正比率函数,则a的值是【考点】G1:反比率函数的定义;F2:正比率函数的定义【专题】填空题【难度】中【剖析】利用反比率函数的定义及正比率函数的定义求解即可22【解答】解:由反比率函数的定义得,a210,a2a1=1,解得a=0,由正比率函数的定义得,a210,a2a1=1,解得a=2故答案为:0,2【议论】本题主要察看了反比率函数的定义及正比率函数的定义,解题的重点是熟记定义17如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将?ABCO绕点A逆时针旋转获得?ADEF,AD经过点O,点F碰巧落在x轴的正半轴上,若点D在反比率函数y=(x0)的图象上,则k的值为【考点
30、】G6:反比率函数图象上点的坐标特点;L5:平行四边形的性质【专题】填空题【难度】中【剖析】依照旋转的性质以及平行四边形的性质得出BAO=AOF=AFO=OAF,进而求出D点坐标,进而得出k的值【解答】解:以以下图:过点D作DMx轴于点M,由题意可得:BAO=OAF,AO=AF,ABOC,则BAO=AOF=AFO=OAF,故AOF=60=DOM,OD=ADOA=ABOA=62=4,MO=2,MD=2,D(2,2),k=2(2)=4故答案为:423【议论】本题主要察看了平行四边形的性质以及反比率函数图象上点的坐标特点,正确得出D点坐标是解题重点三解答题18计算:(1)23(2)(3)()(4)(
31、4)(a、b0)【考点】75:二次根式的乘除法【专题】解答题【难度】难【剖析】(1)系数相乘,被开方数相乘,最后求出即可;(2)把被开方数分解因式后开出来即可;(3)分别把系数和被开方数分别相乘除,再求出最后结果即可;(4)把被开方数相乘除,最后求出结果即可【解答】解:(1)原式=(23)=66=36;(2)原式=(a2+b2);24(3)原式=(14)=10;(4)原式=【议论】本题察看了二次根式的混淆运算,主要察看学生的计算和化简能力19计算:(1)(2)(3)(4)(5)【考点】75:二次根式的乘除法【专题】解答题【难度】难【剖析】(1)先进行二次根式的乘法运算,尔后化简二次根式即可;(
32、2)先进行二次根式的乘法运算,尔后化简二次根式即可;(3)先进行二次根式的乘法运算,尔后化简二次根式即可;(4)先进行二次根式的乘法运算,尔后再进行二次根式的除法运算即可;(5)先进行括号里面的乘法运算,尔后将二次根式化为最简,最后再进行除法运算即可【解答】解:(1)原式=7;(2)原式=6=30;(3)原式=x;(4)原式=1;25(5)原式=12=【议论】本题察看了二次根式的乘除运算,属于基础题,掌握二次根式的化简及二次根式的乘除法例是重点20先察看以下的计算,再达成:(1);请你直接写出下面的结果:=2;=;(2)依照你的猜想、概括,运用规律计算:【考点】76:分母有理化【专题】解答题【
33、难度】难【剖析】(1)依照题中的解题过程即可获得结果;(2)概括总结获得一般性规律,抵消即可获得结果【解答】解:(1)=2;=;(2)依照题意得:原式=1+=1=21故答案为:(1)2;【议论】本题察看了分母有理化,弄清阅读资料中的解题方法是解本题的重点21两个反比率函数和在第一象限内的图象以以下图,点P在的图象上,PCx轴于点C,交的图象于点A,PDy轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:26ODB与OCA的面积相等四边形PAOB的面积不会发生变化;PA与PB向来相等;当点A是PC的中点时,点B必然是PD的中点其中必然正确的选项是(把你认为正确结论的序号都填上,少填或错
34、填不给分)【考点】G5:反比率函数系数k的几何意义【专题】解答题【难度】难【剖析】由于点P在y=上,点A、B在y=上,依照反比率函数系数k的几何意义,对各结论进行判断【解答】解:由反比率函数系数k的几何意义判断各结论:ODB与OCA的面积相等;正确,由于A、B在同一反比率函数图象上,则两三角形面积相等,都为四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化PA与PB向来相等;错误,不用然,只有当四边形OCPD为正方形时知足PA=PB当点A是PC的中点时,点B必然是PD的中点正确,当点A是PC的中点时,k=2,则此时点B
35、也必然是PD的中点故必然正确的选项是【议论】本题借助图象察看了反比率函数系数k的几何意义,表现了数形联合的思想22如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是该直线27与双曲线y=的一个交点,过点C作CD垂直y轴,垂足为D,且SBCD=1(1)求双曲线的剖析式(2)设直线与双曲线的另一个交点为E,求点E的坐标【考点】G8:反比率函数与一次函数的交点问题;G5:反比率函数系数k的几何意义;G7:待定系数法求反比率函数剖析式;K3:三角形的面积【专题】解答题【难度】难【剖析】(1)先依照BCD的面积是1求出BD的值,进而得出B、D两点的坐标求出a的值,再把点C的坐标代入双曲
36、线y=的即可求出双曲线的剖析式;(2)把C点坐标代入直线y=kx+2即可得出k的值,进而得出直线AB的剖析式,在解直线与双曲线剖析式组成的方程组即可求出点E的坐标【解答】解:(1)BCD的面积为1,即BD=2,又点B是直线y=kx+2与y轴的交点,点B的坐标为(0,2)点D的坐标为(0,4),CDy轴;点C的纵坐标为4,即a=4,点C在双曲线上,将x=1,y=4,代入y=,得m=4,双曲线的剖析式为y=;(2)点C(1,4)在直线y=kx+2上,284=k+2,k=2,直线AB的剖析式为y=2x+2联立方程组:,解得经查验,是方程组的解,故E(2,2)【议论】本题察看的是反比率函数与一次函数的
37、交点问题,待定系数法求反比率函数的剖析式及三角形的面积,熟知反比率函数的性质是解答本题的重点23如图,正方形ABCD的边CD在正方形ECGF的边CE上,连结BE、DG(1)若ED:DC=1:2,EF=12,试求DG的长(2)察看猜想BE与DG之间的关系,并证明你的结论【考点】LE:正方形的性质;KD:全等三角形的判断与性质;KQ:勾股定理【专题】解答题【难度】难【专题】16:压轴题【剖析】(1)依照正方形性质得出DCG=90,CG=EF=CE=12,求出CD,依照勾股定理求出DG即可;(2)依照正方形性质得出DCG=ECB=90,CE=CG,CD=BC,依照SAS证DCGBCE,推出BE=DG
38、,1=2,求出1+3=90,依照三角形的内角和定理求出EHD=90,即可退出BEDG,【解答】(1)解:四边形EFGC是正方形,DCG=90,CG=EF=CE=12,ED:DC=1:2,CD=8,在RtDCG中,由勾股定理的:DG=4;29(2)BE与DG之间的关系是BE=DG,BEDG,证明:延伸GD交BE于H,四边形ABCD和四边形EFGC是正方形,DCG=ECB=90,CE=CG,CD=BC,在DCG和BCE中,DCGBCE(SAS),BE=DG,1=2,3=4,2+4=90,1+3=90,EHD=18090=90,BEDG,即BE与DG之间的关系是BE=DG,BEDG【议论】本题察看了
39、正方形性质,勾股定理,全等三角形的性质和判断,三角形的内角和定理,垂直的定义等知识点,主要察看学生的推理能力和猜想能力,题目拥有必然的代表性,是一道比较好的题目24如图,ABC中,B=90,点M在AB上,AM=BC,作正方形CMDE,连结AD(1)求证:AMDBCM(2)点N在BC上,CN=BM,连结AN交CM于点P,试求CPN的大小(3)在(2)的条件下,已知正方形CMDE的边长为3,AP=2PN,求AB的长30【考点】LE:正方形的性质;KD:全等三角形的判断与性质【专题】解答题【难度】难【剖析】(1)依照角的互余关系得出AMD=BCM,再由SAS即可证明AMDBCM;(2)连结CD,证明
40、四边形ANCD是平行四边形,即可得出CPN=DCM=45;(3)作NFCM于F,设AM=a,AD=b,依照三角函数关系,求出AN,再由AN=CD以及勾股定理即可求出AM、BM,进而得出AB【解答】(1)证明:四边形CMDE是正方形DM=CM,DMC=90,AMD+BMC=90,B=90,BMC+BCM=90,AMD=BCM,在AMD和BCM中,AMDBCM(SAS);(2)解:连结CD,以以下图:四边形CMDE是正方形,DCM=ECM=45,AMDBCM,DAM=B=90,AD=BM,ADBC,CN=BM,31AD=CN,四边形ANCD是平行四边形,ANCD,CPN=DCM=45;(3)解:设
41、AM=a,AD=b,作NFCM于F,以以下图:则CN=AD=b,BC=AM=a,sinAMD=,sinNCF=,AMD=NCF,FN=,CPN=45,PN=FN=,AP=2PN=,AN=AP+PN=b2,四边形DMCE是正方形,CD=3,AN=CD=3,b2=3,解得:b=,在RtADM中,AM2+AD2=DM2,即a2+b2=9,解得:a=,AB=AM+BM=+32【议论】本题察看了正方形的性质、全等三角形的判断与性质以及勾股定理、三角函数的运用、平行四边形的判断与性质;本题难度较大,综合性强,特别是(2)经过作协助线证明平行四边形得出结果;(3)经过设未知数,依照三角函数关系和勾股定理得出
42、方程,解方程求出结果25某师范大学为认识该校数学系1000名大学生每学期参加社会实践活动的时间,随机对该系50名大学生进行了检查,结果以下表:时间45678910111213(天)人数12457118642并绘制了以下的频数散布表和频数散布直方图分组频数频次3.55.530.065.57.50.187.59.5180.369.511.511.513.560.12共计501依照以上供应的信息,解答以下问题:(1)补全频数散布表(2)补全频数散布直方图(3)请你估计这所大学数学系的学生中,每学期参加社会实践活动的时间很多于天的大概有多少人?【考点】V8:频数(率)散布直方图;V5:用样本估计整体;
43、V7:频数(率)33散布表【专题】解答题【难度】难【剖析】(1)依照频数散布直方图得出,以及频数就是每一组中数据的个数,得出表中5.57.5范围内频数为:9,进而求出9.511.5范围内频数,即可求解;(2)利用(1)中所求数据补全频数散布直方图即可得出答案注意长方形高度要符合要求;(3)第一依照表格的数据,求出很多于10天所占的比率,尔后再乘以全年级的总人数即可【解答】解:(1)联合频数散布直方图得出,表中5.57.5范围内频数为:9,9.511.5范围内频数为:5039186=14;频数散布表以以以下图分组频数频次3.55.530.065.57.590.187.59.5180.369.51
44、1.5140.2811.513.560.12共计501(2)依照(1)中所求补全频数散布直方图,以以以下图;(3)(8+6+4+2)501000=400(人)答:这所学校该年级的学生中,每学期参加社会实践活动时间很多于10天的大约有400人【议论】本题主要察看了利用样本估计整体和频数散布直方图与统计图表的综合应用,利用图表综合应用获得正确信息是解决问题的重点3426为了认识我县初中学生体育活动情况,随机检查了720名八年级学生,检查内容是:“每日锻炼可否高出1小时及未高出1小时的原因”,利用所得的数据制成了扇形统计图和频数散布直方图依照图示,解答以下问题:(1)若在被检查的学生中随机选出一名学
45、生测试其体育成绩,选出的是“每日锻炼高出1小时”的学生的概率是多少?(2)没“时间”锻炼的人数是多少?并补全频数散布直方图;(3)2012年我县八年级学生约为1.2万人,按此检查,能够估计2012年我县八年级学生中每日锻炼未高出1小时的学生约有多少万人?【考点】V8:频数(率)散布直方图;V5:用样本估计整体;VB:扇形统计图【专题】解答题【难度】难【专题】27:图表型【剖析】(1)察看图形可知高出1小时在扇形中占90,所以“每日锻炼高出1小时”的学生的概率是90360;(2)依照图形信息求出未高出1小时人数,再联合条形统计图求出“没时间”人数;(3)用总人数每日锻炼未高出1小时的学生的百分比
46、即可求得结果【解答】解(1)=,选出的碰巧是“每日锻炼高出1小时”的学生的概率是;(2)72012020=400故“没时间”锻炼的人数是400名频数散布图为:35(3)1.2=0.9(万人)故估计2011年我县八年级学生中每日锻炼未高出1小时的学生约有0.9万人【议论】本题察看的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同样的统计图中获得必要的信息是解决问题的重点条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小27某中学张开“绿化家乡、植树造林”活动,为认识全校植树情况,对该校甲、乙、丙、丁四个班级植树情况进行了检查,将收集的数据整理并绘制成图1和图两
47、幅尚不完满的统计图,请依照图中的信息,达成以下问题:(1)这四个班共植树棵;(2)请你在答题卡上不全两幅统计图;(3)求图1中“甲”班级所对应的扇形圆心角的度数;(4)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树有多少棵?36【考点】VC:条形统计图;V5:用样本估计整体;VB:扇形统计图【专题】解答题【难度】难【剖析】(1)依照乙班植树40棵,所占比为20%,即可求出这四个班种树总棵数;(2)依照丁班植树70棵,总棵数是200,即可求出丁所占的百分比,再用整体1减去其余所占的百分比,即可得出丙所占的百分比,再乘以总棵数,即可得出丙植树的棵数,进而补
48、全统计图;(3)依照甲班级所占的百分比,再乘以360,即可得出答案;(4)用总棵数平均成活率即可获得成活的树的棵数【解答】解:(1)四个班共植树的棵数是:4020%=200(棵);(2)丁所占的百分比是:100%=35%,丙所占的百分比是:130%20%35%=15%,则丙植树的棵数是:20015%=30(棵);如图:(3)甲班级所对应的扇形圆心角的度数是:30%360=108;(4)依照题意得:200095%=1900(棵)答:全校栽种的树中成活的树有1900棵故答案为:200【议论】本题察看的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中获得必要的信息是解决问题的重点条形统
49、计图能清楚地表示出每37个项目的数据;扇形统计图直接反应部分占整体的百分比大小28如图是我市某校八年级学生为贫困山区学生捐钱情况抽样检查的条形图和扇形统计图(1)求本次抽样的学生有多少人;(2)在扇形统计图中,求该样本中捐钱15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐钱总数【考点】VC:条形统计图;V5:用样本估计整体;VB:扇形统计图【专题】解答题【难度】难【剖析】(1)用捐钱5元的人数除以它所占的百分比即可解答;(2)用样本容量分别减去捐钱5元的人数和捐钱10元的人数获得捐钱15元的人数,于是可计算出捐钱15元的人数的百分比,尔后用360乘以这个百分比
50、即可获得捐钱15元的人数所占的圆心角的度数;(3)先样本的平均数,依照样本估计整体,用800乘以这个平均数可估计出九年级学生捐钱总数【解答】解:(1)1530%=50(人),答:本次抽样的学生有50人;(2)捐钱15元的人数=501525=10(人),360=72,答:该样本中捐钱15元的人数所占的圆心角度数为72;(3)据此信息可估计该校六年级学生每人捐钱为:515+1025+1510)(15+25+10)=72050=9.5(元)389.5800=7600(元)答:八年级捐钱总数为7600元【议论】本题察看了条形统计图:条形统计图是用线段长度表示数据,依照数量的多少画成长短不同样的矩形直条,尔后按次序把这些直条排列起来从条形图能够很简单看出数据的大小,便于比较也察看了样本估计整体和扇形统计图29如图,在平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论