《一元次方程》全章教案_第1页
《一元次方程》全章教案_第2页
《一元次方程》全章教案_第3页
《一元次方程》全章教案_第4页
《一元次方程》全章教案_第5页
已阅读5页,还剩58页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一元次方程全章教案一元二次方程全章教案 篇1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式难点:求根公式的条件:b2 -4ac0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=02、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a0)呢?三、互

2、动探究:一般地,对于一元二次方程ax2+bx+c=0(a0),当b2-4ac0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a0)的根是由方程的系数a、b、c确定的。因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根。注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号。(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac0时,可以用公式求出两个不相等的实数解;当b2-4ac0,即(-4)2+10不论取何值,该方程都是一元二次方程五

3、、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用一元二次方程全章教案 篇6一、复习目标:1、能说出一元二次方程及其相关概念,;2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。3、能灵活应用一元二次方程的知识解决相关问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力。二、复习重难点:重点:一元二次方程的解法和应用.难点:应用一元二次方程解决实际问题的

4、方法.三、知识回顾:1、一元二次方程的定义:2、一元二次方程的常用解法有:配方法的一般过程是怎样的?3、一元二次方程在生活中有哪些应用?请举例说明。4、利用方程解决实际问题的关键是在解决实际问题的过程中,怎样判断求得的结果是否合理?请举例说明。四、例题解析:例1、填空1、当m时,关于x的方程(m1)+5+mx=0是一元二次方程.2、方程(m21)x2+(m1)x+1=0,当m时,是一元二次方程;当m时,是一元一次方程.3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.4、用配方法解方程x2+8x+9=0时,应将方程变形为()A、(x+4)2=7B、(x+4)2=9

5、C、x+4)2=25D、(x+4)2=7学习内容学习随记例2、解下列一元二次方程(1)4x216x+15=0(用配方法解)(2)9x2=2x26x(用分解因式法解)(3)(x1)(2x)=1(选择适当的方法解)例3.1、新竹文具店以16元/支的价格购进一批钢笔,根据市场调查,如果以20元/支的价格销售,每月可以售出200支;而这种钢笔的售价每上涨1元就少卖10支.现在商店店主希望销售该种钢笔月利润为1350元,则该种钢笔该如何涨价?此时店主该进货多少?2、如图,在RtACB中,C=90,AC=6m,BC=8m,点P、Q同时由A、B两点出发分别沿AC,BC方向向点C匀速运动,它们的速度都是1m/

6、s,几秒后PCQ的面积为RtACB面积的一半?一元二次方程全章教案 篇7教学目标知识与技能目标1、构建本章的部分知识框图。2、复习一元二次方程的概念、解法。过程与方法1、通过对本章方程解法的复习,进一步提高学生的运算能力。2、在解一元二次方程的过程中体会转化等数学思想。情感、态度与价值观通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感教学重点1、一元二次方程的概念2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;教学难点解法的灵活选择;例4和例5的解法。教学过程一、创设情境导入新课问题:本章中,我们有哪些收获?(教师点拨引导学生构建

7、本章部分知识框图)二、师生互动共同探究1、复习概念例1例22、四种解法(1)解法及其关系(2)根的形式x1=3x2=4(3)熟悉解法例3用四种解法分别解此方程(4)方法优选3、方法补充例44、解法纠错例5解关于x的方程错误解法正确解法三、小结反思提炼思想我们有哪些收获?解方程的思想方法是什么?四、布置作业巩固提高一元二次方程全章教案 篇8【教材分析】一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,

8、学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。【教学目标】1、理解一元二次方程的概念,能熟练地把一元二次方程整理成一般形式(0)并知道各项及其系数。2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的进一步认识。【教学重点与难点】理解一元二次方程的概念及一般形式,会正确识别一般式中的“项”及“系数”。【教法、学法】因为学生已经学习了一元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学。教学中力

9、求体现“问题情景-数学模型-概念归纳”的模式。本节课借助多媒体辅助教学,指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。【教学过程】一、复习旧知,类比新知1、一元一次方程的概念像这样的等号两边都是整式,只含有一个未知数(一元),并且未知数的次数是1(一次)的方程叫做一元一次方程2、一般形式:是常数且设计意图:复习一元一次方程,让学生回忆起一元一次方程的概念,回忆起“项”及“系数”的概念,通过类比,让学生能更好的理解一元二次方程的概念

10、。二、生活情境,自主学习(1)正方形桌面的面积是2m,设正方形桌面的边长是x m,可得方程(2)矩形花圃一面靠墙,另外三面所围的栅栏的总长度是19米。如果花圃的面积是24m2,设花圃的宽是x m则花圃的长是m,可得方程(3)一张面积是600cm2的长方形纸片,把它的一边剪短10cm,恰好得到一个正方形。设这个正方形的边长是x cm,可得方程(4)长5米的梯子斜靠在墙上,梯子的底端与墙的距离比梯子的顶端到地面的距离多1m,设梯子的底端到墙面的距离是x m,可得方程设计意图:因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。让学生从实际问题中提炼出数学问题,初步培养

11、学生的空间概念和抽象能力。情景分析中学生自然会想到用方程来解决问题,但所列的方程不是以前学过的,从而激发学生的求知欲望,顺利地进入新课。三、探究学习:1、概念得出讨论交流:以上所列方程有哪些共同特征?设计意图:英国一位着名的数学教育心理学家曾说:概念的教学要从大量实例出发,通过实例帮助完成定义,而不是教定义。让学生充分感受所列方程的特点,再通过类比的方法得到定义,从而达到真正理解定义的目的.2、巩固概念下列方程中那些是一元二次方程。设计意图:这组练习目的在于巩固学生对一元二次方程定义中3个特征的理解.题目的设置,目的在于进一步加深学生对定义的掌握,提高学生对变式的理解能力.此环节采取抢答的形式

12、,提高学生学习数学的兴趣和积极性.3、一元二次方程的一般形式:设计意图:此环节让学生通过自主探究,类比一元一次方程一般形式,得出一元二次方程一般形式和项,系数的概念,从而达到真正理解并掌握的目的.4、典型例题例将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项设计意图:此题设置的目的在于加深学生对一般形式的理解。5、巩固练习把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项设计意图:此题设置的目的在于加深学生对一般形式的理解6、拓展应用(1)若是关于x的一元二次方程,则()A、p为任意实数B、p=0 C、p0 D、p=0或1(2)若

13、关于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范围是(3)、若方程是关于x的一元二次方程,则m的值为设计意图:此题让学生进行思考,讨论,让学生进行讲解,教师作适当归纳,可留疑,让学生课下思考。此题需进行分类讨论,开拓学生思维,体现数学的严谨性。7.课堂小结设计意图:小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,.为每个学生都创造了数学活动中获得活动经验的机会。【课后作业】1、下列方程中哪些是一元二次方程?试说明理由。2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:一元二次方程全章教案 篇9教学内容根据面积与面积

14、之间的关系建立一元二次方程的数学模型并解决这类问题教学目标掌握面积法建立一元二次方程的数学模型并运用它解决实际问题利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题重难点关键1重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题2难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型教学过程一、复习引入1直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?2正方形的面积公式是什么呢?长方形的面积公式又是什么?3梯形的面积公式是什么?4菱形的面积公式是什么?5平行四边形的面积公式是什么?6圆的面积公式是什么?二、探索新现在,我们根据

15、刚才所复习的面积公式来建立一些数学模型,解决一些实际问题例1、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模解:(1)设渠深为xm则渠底为(x+0.4)m,上口宽为(x+2)m依题意,得: (x+2+x+0.4)x=1.6整理,得:5x2+6x-8=0解得:x1= =0.8m,x2=-2(舍)上口宽为2.8m,渠底

16、为1.2m(2) =25天答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道例2、如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm圆的方程的课堂教案设计1

17、、教学目标(1)知识目标:a、在平面直角坐标系中,探索并掌握圆的标准方程;b、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;c、利用圆的方程解决与圆有关的实际问题。(2)能力目标:a、进一步培养学生用解析法研究几何问题的能力;b、使学生加深对数形结合思想和待定系数法的理解;c、增强学生用数学的意识。(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。2、教学重点、难点(1)教学重点: 圆的标准方程的求法及其应用。(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程选择恰当的坐标系解决与圆有关的实际问题。3、教学过程(一)创设情境

18、(启迪思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?引导:画图建系学生活动:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y0)将x=2.7代入,得即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心在,半径为时又如何呢?学生活

19、动:探究圆的方程。教师预设:方法一:坐标法如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P=M|MC|=r由两点间的距离公式,点M适合的条件可表示为把式两边平方,得(xa)2+(yb)2=r2方法二:图形变换法方法三:向量平移法(三)应用举例(巩固提高)I直接应用(内化新知)问题三:1、写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为(3)经过点,圆心在点2、根据圆的方程写出圆心和半径II灵活应用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。教师引导 由问题三知:圆心与半径可以确定圆。2、求过点,圆心

20、在直线上且与轴相切的圆的方程。教师引导 应用待定系数法寻找圆心和半径。3、已知圆的方程为,求过圆上一点的切线方程。学生活动 探究方法教师预设多媒体课件演示:方法一:待定系数法(利用几何关系求斜率垂直)方法二:待定系数法(利用代数关系求斜率联立方程)方法三:轨迹法(利用勾股定理列关系式)方法四:轨迹法(利用向量垂直列关系式)4、你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是:III实际应用(回归自然)问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。多媒体课件演示创设实际

21、问题情境(四)反馈训练(形成方法)问题六:1、求以C(1,5)为圆心,并且和y轴相切的圆的方程。2、已知点A(4,5),B(6,1),求以AB为直径的圆的方程。3、求过点且圆心在直线上的圆的标准方程。4、求圆x2+y2=13过点P(2,3)的切线方程。5、已知圆的方程为,求过点的切线方程。(五)小结反思(拓展引申)1、课堂小结:(1)知识性小结:圆心为C(a,b),半径为r 的圆的标准方程为:当圆心在原点时,圆的标准方程为:已知圆的方程是,经过圆上一点的切线的方程是:(2)方法性小结:求圆的方程的方法:I找出圆心和半径;II待定系数法求解应用问题的一般方法2、分层作业:(A)巩固型作业:课本P

22、8182:(习题7.6)1、2、4(B)思维拓展型作业:试推导过圆上一点的切线方程。3、激发新疑:问题七:1、把圆的标准方程展开后是什么形式?2、方程:的曲线是什么图形?设计说明圆是学生比较熟悉的曲线。初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点就放在了用解析法研究它的方程和圆的.标准方程的一些应用上。首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由潜入深的解决问题,并通过最终在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养

23、学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、我的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想,应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时提锻炼了思维、提高了能力、培养了兴趣、增强了信心。方程教案 篇1本单

24、元教学方程的知识,是在四年级(下册)“用字母表示数”的基础上编排的。第一次教学方程,涉和的基础知识比较多,教学内容分成三局部编排。第12页教学等式的含义与方程的意义,根据直观情境里的等量关系列方程。第311页教学等式的性质,解方程,列方程解答一步计算的实际问题。第1214页全单元内容的整理与练习。本单元编排的一篇“你知道吗”简要介绍了我国古代就有方程的思想,并有运用方程解决实际问题的历史记载。1?从等式到方程,逐步构建新的数学知识。方程是等式里的一类特殊对象,教材用属概念加种差的方式,按“等式+含有未知数方程”的线索教学方程的意义。(1)借助天平体会等式的含义。等式是方程的生长点,同学在前几册

25、教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让同学体会等式的含义。天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让同学在天平平衡的直观情境中体会等式,符合同学的认知特点。例1在天平图下方出现“=”,让同学用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。例2继续教学等式,教材的布置有三个特点:第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出

26、的不是等式。同学在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于同学初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对同学的要求由扶到放。圆圈里的关系符号都要同学填写,同学在选择“=”“”或“”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让同学填写,这是因为他们以前没有写过含有未知数的等式与不等式。(2)教学方程的意义,突出概念的内涵与外延。“含有未知数”与“等式”是方程意义的两点最重要的内涵。“含有未知数”也是方程区别于其他等式的关键特征。在第1页的两道例题里,同学陆续写出了

27、等式,也写出了不等式;写出了不含未知数的等式,也写出了含有未知数的等式。这些都为教学方程的意义提供了鲜明的感知资料。教材首先告诉同学:像x+50=150、2x=200这样含有未知数的等式叫做方程,让他们理解x+50=150、2x=200的一起特点是“含有未知数”,也是“等式”。这时,假如让同学对两道例题里写出的50+50=100、x+50100和x+50200不能称为方程的原因作出合理的解释,那么同学对方程是等式的理解会更深刻。教材接着布置讨论“等式和方程有什么关系”,并通过“练一练”第1题让同学先找出等式,再找出方程,理解等式与方程这两个概念之间的包括与被包括关系。即方程都是等式,但等式不都

28、是方程。这道题里有以x为未知数的等式,也有以y为未知数的等式,使同学对“未知数”有正确的理解,防止把未知数局限为x,把方程狭隘地理解为“含有x的等式”。“练一练”第2题要求同学自身写出一些方程并相互交流,让它们在写方程时关注方程的实质属性,从而巩固方程的概念。(3)用方程表示直观情境里的相等关系。第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养同学发现和理解实际情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:一是直观情境的出现从天平图开始,发展到带括线的图画。带括

29、线的图画在一年级(上册)就出现了,同学比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让同学看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充沛了,看天平图列方程能让同学初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个局部数相加是它们的总数。在几个局部数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,同学容易理解。如文具盒的

30、价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。假如少数同学列出的方程是20-x=12或16.8x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.84=x这样的方程。因为后者仍然是过去列算式的思路,不利于同学体会数量间的相等关系,对以后的教学也是有弊无利的。2?利用等式的性质解方程。在过去的小学数学教材里,同学是应用四则计算的各局部关系解方程。这样的思路只适宜解比较简单的方程,而且和中学教材不一致。规范从同学的久远发展和中小学教学的衔接动身,要求小学阶段的同学也要利用等式的性质解方程。因此,本单元布置了关于等式性质的

31、内容,分两段教学:第一段是等式的两边同时加上或减去同一个数,结果仍然是等式;第二段是等式的两边同时乘或除以同一个不等于零的数,结果仍然是等式。在每一段教学等式的性质以后,都和时让同学运用等式的性质解方程。(1)在直观情境中,按“形象感受笼统概括”的方式教学等式的性质。教材仍然用天平的直观情境教学等式的性质。因为在两臂平衡的天平上,左右两边物体的质量发生相同的变化,天平的两臂仍然坚持平衡。这种现象能形象地表示等式的性质,有利于同学的直观感受。例3教学等式的一个性质。教材设计了四组天平图,每组左边的天平图表示变化前的等式,右边的天平图表示变化后的等式,从左边的等式到右边的等式,反映了等式的性质。上

32、面的两组图揭示的是等式的两边都加上一个相同的数,仍然是等式;下面的两组图揭示的是等式的两边都减去相同的数,仍然是等式。四组图的内容综合起来就是等式的一个性质。教材精心设计每组天平上物体的质量,第一组图写出的是不含未知数的等式,在左边的天平表示20=20以后,右边天平的两边各加1个10克的砝码,看图填写20+()20+()。同学在两个括号里都写“10”,在圆圈里写“=”,联系天平两边各加10克都变成30克,而天平仍然平衡的现象,体会填写的等式是合理的。这样就首次感知了等式的两边都加上同一个数,结果仍是等式。第二组图写出的是含有未知数的等式,从x=50到x+20=50+20的变化和比较中,对等式两

33、边都加上相同的数有进一步的感受。第三组图写出的等式两边都用字母a表示砝码的质量,圈出a克砝码并画上箭头,表示去掉它的意思。联系已有经验,这里的a代表许多个数,这组天平图与等式概括了众多等式两边减去相同数的情况。第四组图在方程x+20=70的两边都减去20,不但又一次表示了等式性质,而且与解方程的方法十分接近。另外,这道例题的8个等式中,有7个让同学在圆圈里填写“=”组成等式,这是引导同学切实关注等式有没有变化。右边的四个等式分别让同学在括号里填出同时加上或减去的数,有利于发现等式的性质。例5教学等式的另一个性质。教材注意利用同学前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实

34、例后,再让同学写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意:一是让同学正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点同学能够接受。因为前面的教学中,已经多次提到除数不能是0。(2)应用等式的性

35、质解方程。例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,同学先从图中能得到求x值的启示:只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理:等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让同学联系已有的解方程经验和有关的等式性质,考虑“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从同学实际动身,让同学主动学习的教育理念。另外,例4的编写还注意了三点:一是示范了解方程的书写格式,强调等式变换时,各个等式的等

36、号要上下对齐,教学时必需严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导同学根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。协助同学逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真考虑的问题。用好教材设计的两道题,能培养同学这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号,引导同学正确应用等式的性质,体会解方程的战略和思路,理出解方程的关键步骤。同学在方框

37、里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,协助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的考虑流畅、书写简便,从而提升解方程的能力。教学时要让同学体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以和为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。方程教案 篇2教学目标:知识目标:通过练习,使学生进

38、一步理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。能力目标:培养学生分析问题、解答问题的能力。态度、情感、价值观:培养学生认真细致的学习习惯。教学重点:理解数量关系,掌握用方程解应用题的方法,能正确运用方程解答应用题。教学难点:理解数量关系。教学过程:一、基本练习(5 分钟)1列方程(1)某数的5 倍加上它的2 倍和是42,求这个数。(2)X 的5 倍减去它的2 倍差是1.2,求X。2育民小学四五年级共植树600 棵,五年级植树是四年级的3 倍。两个年级各植树多少棵?(1)画图,找等量关系。(2)列方程解应用题。二、层次练习(15 分钟)1育民小学四五年级同学植树,五年级植

39、树是四年级的3 倍,五年级比四年级多植300 棵。四五年级各植多少棵?(1)这道题与上题有哪些相同点和不同点?(2)你会解答这道题吗?试做(3)订正:解:设四年级植X 棵,五年级植3X 棵。3X-X=3002X=300X=1503X=3150=450答:四年级植150 棵,五年级植450 棵。2试一试:妈妈的年龄是女儿的4 倍,妈妈比女儿大27 岁,妈妈和女儿各多少岁?学生独立做3小结:解答时,要抓住有倍的那句话设出未知数。看一看是求它们的和还是差,列出方程。三、巩固练习(15 分钟)1看图列方程125 页3 题。完成后交流2对比练习(1)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米

40、的两地同时出发,相向而行,经过1.6 小时相遇。李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行多少千米?(2)张叔叔骑自行车,李叔叔骑摩托车。二人从相距112 千米的两地同时出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,二人经过几小时相遇?(3)张叔叔骑自行车,李叔叔骑摩托车。二人同时从两地出发,相向而行,李叔叔骑摩托车每小时行54 千米,张叔叔骑自行车每小时行16 千米,经过1.6 小时相遇。两地相距多少千米?独立完成后交流。四、总结交流(5 分钟)说说你有什么收获?方程教案 篇3教学内容:p53-54练习十一1,2,3教学目标:1. 通过观察

41、天平演示,使学生初步理解方程的意义;2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;3. 培养学生观察、描述、分类、抽象、概括、应用等能力。教学重点:判断一个式子是不是方程;初步理解方程的意义。课前准备:课件,习题板教学过程:一、复习旧知,激趣导入同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!二、出示学习目标1、初步理解方程的意义,会判断

42、一个式子是否是方程2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。三、学习过程。(一)认识天平(二)新课学习自学指导(一)。自学p53, 分别说一说图1,图2,显示的信息。图1天平两边平衡,一个空杯重100克。图2在空杯里加一杯水后天平不平衡了。自学指导(二)再看图3说说图3 显示的信息。天平1杯子和里面的水比200克法码重天平2杯子和里面的水比300克法码轻自学指导(三)请用算式表示图3数量关系。天平1、100+x200天平2、100+x300自学指导(四)再看图4说说图4 显示的信息,请用算式表示图4数量关系100+x=250自学指导(五)观察比较下列算式说说你的发现观

43、察比较100+x200100+x300100+x=250前面两个算式两边不相等,后面一个算式两边是相等的。教师总结:像这样两边相等的算式我们把它叫做等式。(板书)课堂练习(一)写出几个等式自学指导(六)请学生把这里的等式分类,并说说你们是如何分类的?20+30=5020+=100502=10014-8=63y=18078 3=234100+2y=350学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)教师总结:含有未知数的等式,称为方程。(板书)课堂练习(二)请大家写出几个方程。四、小结:回答什么是方程?方程教案 篇4教学目标:1.知识与技能:结合具体的问题,使同学们学会用解方

44、程和用方程解决具体的问题。2.过程与方法:结合课本内容和实际问题来使同学们形成用方程解决问题的观念。3.情感态度价值观:在学习方程解决问题的过程中培养同学们对于学习数学的兴趣,培养同学们克服困难的品质,培养同学们探索新知的勇气和信心。教学过程:一、回顾与交流。1.复习方程概念。什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)判断下面是不是方程:3X+56+8=146X=157X+315(通过这个教学使学生充分理解方程的定义)让学生先独立解课本P61.T1.两道解方程的题目再让学生说说

45、是怎样解的。通过这里的两道练习复习小学所学习的解方程的方法(即根据等式的性质来解。)2.解简易方程。复习61页第二题首先让学生找出这三个题的等量关系,让学生分小组讨论讨论,在小组内说一说怎样找的等量关系。然后请学生在班内汇报一下。再请三位同学演板,并请演板的同学解释自己的做法。(在这个过程中,让学生首先学会找出题目的等量关系,再根据等量关系去列方程,使学生养成用方程解决问题的时候,要懂得方程是根据等量关系列出的。)集体订正:解(1)方程是怎样想的,检查解方程时每一步依据什么做的。(2)方程与(1)有什么不同,解方程时有什么不同? 师生共同小结解方程的一般步骤(略)。怎样检验方程的解对不对? 增

46、加找数量关系练习。1.六一班有50人,其中男生有28人,女生有多少人?2.六一班有22名女生,男生比女生的2倍少16人,男生有多少人?首先让学生独立找出题目中的等量关系,然后让同桌2人互相说一说,然后再解答。二、巩固与应用。引导学生做课本巩固练习题1.解方程。组织学生独立完成,然后让学生上去讲一讲解题的方法。2.看图列出方程,并求出方程的解。首先让学生在小组内说一说解决的方法,再请学生汇报交流。3.看图理解题意,引导学生分析数量关系,再列方程解答。请学生演板,演板后组织学生讨论。4.理解文字题,根据数量关系列出方程并求解。请学生找出题中的等量关系,再让学生完成。三、总结提高。通过这节课的学习,你解决了那些问题,还有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论