高等数学方明亮版数学课件101常数项级数的概念与性质_第1页
高等数学方明亮版数学课件101常数项级数的概念与性质_第2页
高等数学方明亮版数学课件101常数项级数的概念与性质_第3页
高等数学方明亮版数学课件101常数项级数的概念与性质_第4页
高等数学方明亮版数学课件101常数项级数的概念与性质_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高等数学多媒体课件牛顿(Newton)莱布尼兹(Leibniz)9/26/20221第十章 无穷级数(Infinite Series)第一节 常数项级数的概念与性质第二节 常数项级数的审敛法第三节 幂级数第四节 函数展开成幂级数第五节 函数的幂级数展开式的应用 第六节 傅立叶级数主 要 内 容9/26/20222第一节 常数项级数的概念和性质 第十章 (Conception and property of constant term series)一、常数项级数的基本概念二、收敛级数的基本性质三、小结与思考练习9/26/20223一、常数项级数的基本概念定义给定一个数列将各项依即称上式为无穷级

2、数,其中第 n 项叫做级数的一般项,级数的前 n 项和次相加, 简记为称为级数的部分和.则称无穷级数9/26/20224收敛 ,并称 S 为级数的和,记作当级数收敛时, 称差值为级数的余项.则称无穷级数发散 .显然9/26/202259/26/20226例3 讨论等比级数 (又称几何级数)( q 称为公比 ) 的敛散性. 解: 1) 若从而因此级数收敛 ,从而则部分和因此级数发散 .其和为9/26/202272) 若因此级数发散 ;因此n 为奇数n 为偶数从而综合 1)、2)可知,时, 等比级数收敛 ;时, 等比级数发散 .则级数成为不存在 , 因此级数发散.9/26/20228二、收敛级数的

3、基本性质性质1 若级数收敛于 S ,则各项乘以常数 c 所得级数也收敛 ,证: 令则这说明收敛 , 其和为 c S . 说明: 级数各项乘以非零常数后其敛散性不变 .即其和为 c S .9/26/20229性质2 设有两个收敛级数则级数也收敛, 其和为证: 令则这说明级数也收敛, 其和为9/26/2022109/26/202211性质3 在级数前面加上或去掉有限项, 不会影响级数的敛散性.证: 将级数的前 k 项去掉,的部分和为数敛散性相同. 当级数收敛时, 其和的关系为类似可证前面加上有限项的情况 .极限状况相同, 故新旧两级所得新级数9/26/202212性质4 收敛级数加括弧后所成的级数

4、仍收敛于原级数的和.证: 设收敛级数若按某一规律加括弧,则新级数的部分和序列 为原级数部分和序列 的一个子序列,推论: 若加括弧后的级数发散, 则原级数必发散.注意: 收敛级数去括弧后所成的级数不一定收敛.但发散.因此必有例如,用反证法可证例如9/26/202213证: 可见: 若级数的一般项不趋于0 , 则级数必发散 .例如,其一般项为不趋于0,因此这个级数发散.9/26/202214注意:并非级数收敛的充分条件.例如, 调和级数虽然但此级数发散 .事实上 , 假设调和级数收敛于 S , 则但矛盾!所以假设不真 .课本给出了另外两种证法!9/26/202215例6 判断级数的敛散性:解: 考

5、虑加括号后的级数发散 ,从而原级数发散 .9/26/202216内容小结常数项级数的基本概念: 常数项级数、 收敛、发散、等比级数、调和级数 3. 级数收敛的判别方法2. 收敛级数的5个性质课外练习习题101 3(偶数题); 49/26/202217思考与练习答:(1)若二级数都发散 ,不一定发散.例如, (2) 若两级数中一个收敛一个发散 , 则必发散 . (用反证法可证)9/26/202218解: (1) 所以级数 (1) 发散 ;技巧:利用 “拆项相消” 求和2、 判别下列级数的敛散性:9/26/202219(2) 所以级数 (2) 收敛, 其和为 1 .技巧:利用 “拆项相消” 求和9/26/2022203、 判断下列级数的敛散性, 若收敛求其和:解: (1) 令则故从而这说明级数(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论