2022年最新北师大版八年级数学下册第六章平行四边形综合练习试卷(含答案详解)_第1页
2022年最新北师大版八年级数学下册第六章平行四边形综合练习试卷(含答案详解)_第2页
2022年最新北师大版八年级数学下册第六章平行四边形综合练习试卷(含答案详解)_第3页
2022年最新北师大版八年级数学下册第六章平行四边形综合练习试卷(含答案详解)_第4页
2022年最新北师大版八年级数学下册第六章平行四边形综合练习试卷(含答案详解)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北师大版八年级数学下册第六章平行四边形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照

2、这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D602、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:13、如图,小明从A点出发,沿直线前进10米后向左转36,再沿直线前进10米,再向左转36照这样走下去,他第一次回到出发点A点时,一共走的路程是()A180米B110米C120米D100米4、如图,D、E分别为ABC的边AB、AC的中点连接DE,过点B作BF平分ABC,交DE于点F若EF4,AD7,则BC的长为()A22B20C18D165、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则

3、这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形6、如图,桐桐从A点出发,前进3m到点B处后向右转20,再前进3m到点C处后又向右转20,这样一直走下去,她第一次回到出发点A时,一共走了( )A100mB90mC54mD60m7、如图,一张含有80的三角形纸片,剪去这个80角后,得到一个四边形,则1+2的度数是( )A200B240C260D3008、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D409、如图,在RtA

4、BC中,ACB90,BAC30,BC2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连CE,则CE的长不可能是()A1.2B2.05C2.7D3.110、从一个多边形的顶点出发,可以作2条对角线,则这个多边形的内角和是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A、B之间的距离若量得DE=15m,则A、B之间的距离为_m2、如图所示,在ABC中,BCAC,点D在BC上,DCAC10,且,作ACB的平分线

5、CF交AD于点F,CF8,E是AB的中点,连接EF,则EF的长为_3、一个正多边形的边长为6,它的内角和是外角和的2倍,则它的边心距是_4、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm5、如图,在ABC中,C90,BC9,AC12,点D为边AC的中点,点P为边BC上任意一点,若将CDP沿DP折叠得EDP,若点E在ABC的中位线上,则CP的长度为 _三、解答题(5小题,每小题10分,共计50分)1、ABC和ADE均为等腰直角三角形,BACDAE90,将ADE绕点A逆时针旋转一周,连接DB,将线段DB绕点D逆时针旋转90得DF,连接EF(1)如

6、图1,当D在AC边上时,线段CD与EF的关系是 , (2)如图2,当D在ABC的内部时,(1)的结论是否成立?说明理由;(3)当AB3,AD,DAC 45时,直接写出DEF的面积2、一个多边形的内角和比它的外角和的3倍少180,这个多边形的边数是多少?3、如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如下图所示就是一组正多边形(1)观察上面每个正多边形中的a,填写下表:正多边形边数456.na的度数 . (2)是否存在正n边形使得a12?若存在,请求出n的值;若不存在,请说明理由4、若一个多边形的内角和与外角的和是1440,求这个多边形的边数5、ABC和GEF都是等边

7、三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列)当最小时,则MDG的面积为_-参考答案-一、单选题1、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个多边形,边数

8、是,由于每个外角都相等,所以 ,故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为3602、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补3、D【分析】根据题意,小明走过的路程是正多边形,先用360除以36求出边数,然后再乘以10m即可【详解】解:每次小明都是沿直线前进10米后向左转36,他走过的图形是正多边形,边数n=36036=10,他第一次回到出发点A时,一共走了101

9、0=100米故选:D【点睛】本题考查了多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题的关键4、A【分析】根据D、E分别为ABC的边AB、AC的中点,可得DE是ABC的中位线,则,然后证明ABF=DFB,得到DF=BD=7,则DE=DF+EF=11,再由,进行求解即可【详解】解:D、E分别为ABC的边AB、AC的中点,DE是ABC的中位线,DFB=CBF,BF平分ABC,ABF=CBF,ABF=DFB,DF=BD=7,DE=DF+EF=11,故选A【点睛】本题主要考查了三角形中位线定理,等腰三角形的性质与判定,角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握三角形

10、中位线定理5、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键6、C【分析】根据多边形的外角和及每一个外角的度数,可求出多边形的边数,再根据题意求出正多边形的周长即可【详解】解:由题意可知,当她第一次回到出发点A时,所走过的图形是一个正多边形,由于正多边形的外角和是360,且每一个外角为20,3602018,所以它是一个正18边

11、形,因此所走的路程为18354(m),故选:C【点睛】本题考查了多边形的内角与外角,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和=3607、C【分析】三角形纸片中,剪去其中一个80的角后变成四边形,则根据多边形的内角和等于360度即可求得1+2的度数【详解】解:根据三角形的内角和定理得:四边形除去1,2后的两角的度数为180-80=100,则根据四边形的内角和定理得:1+2=360-100=260故选:C【点睛】本题主要考查四边形的内角和,解题的关键是掌握四边形的内角和为360及三角形的内角和为1808、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可

12、得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】

13、本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键9、D【分析】取AB的中点F,得到BCF是等边三角形,利用三角形中位线定理推出EF=BD=1,再分类讨论求得,即可求解【详解】解:取AB的中点F,连接EF、CF,BAC=30,BC=2,AB=2BC=4,BF=FA=BC=CF=2,ABC=60,BCF是等边三角形,E、F分别是AD、AB的中点,EF=BD=1,如图:当C、E、F共线时CE有最大值,最大值为CF+EF=3;如图,当C、E、F共线时CE

14、有最小值,最小值为CF-EF=1;,观察各选项,只有选项D符合题意,故选:D【点睛】本题考查了等边三角形的判定和性质,三角形中位线定理,分类讨论求得CE的取值范围是解题的关键10、D【分析】根据从多边形的一个顶点可以作对角线的条数公式(n3)求出边数,然后根据多边形的内角和公式(n2)180列式进行计算即可得解【详解】解:多边形从一个顶点出发可引出2条对角线,n3=2,解得:n=5,内角和=(52)180=540故选:D【点睛】本题考查了多边形的内角和公式能够利用多边形的对角线的公式,求出多边形的边数是解题的关键二、填空题1、30【分析】根据三角形中位线的性质解答即可【详解】解:点D,E分别是

15、AC,BC的中点,DE是ABC的中位线,AB=2DE=30m故填30【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键2、4【分析】根据等腰三角形的性质得到F为AD的中点,CFAD,根据勾股定理得到DF=6,根据三角形的中位线定理即可得到结论【详解】解:DC=AC=10,ACB的平分线CF交AD于F,F为AD的中点,CFAD,CFD=90,DC=10,CF=8,DF=6,AD=2DF=12,BD=8,点E是AB的中点,EF为ABD的中位线,EF=BD=4,故答案为:4【点睛】本题考查了三角形的中位线定理,等腰三角形的性质,勾股定理,证得E

16、F是ABD的中位线是解题的关键3、【分析】先根据多边形的内角和公式以及外角和等于360确定多边形的边数,然后运用勾股定理解答即可【详解】解:根据题意,得(n2)180=3602解得:n6如图:ACB=60,ACD=30,AC=6AD=3CD=故填【点睛】本题主要考查了多边形的内角和与外角和以及勾股定理的应用,根据题意求得正多边形的边数并画出图形成为解答本题的关键4、24【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填2

17、4【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半5、2或82【分析】分别画三角形的三条中位线,根据题意点只能落DM和MN上,分别画出图像,利用折叠的性质和勾股定理解答即可【详解】解:如图,设BC边中点为M,连接DM,当E在DM上时,由折叠可知,CPPE,CDEP,BC9,AC12,C90,AB15,CMBC,CD6,DM,DE6,EM,在RtPEM中,PM2PE2+EM2,(CP)2CP2+()2,CP2; 如图,设AB边的中点为N,连接DN,当E点落在DN上时,BC9,AC12,C90,CD6,DN,由折叠可知,DECD,CDEP90,DECB,CDE9

18、0,四边形CDEP是矩形,DECD,四边形DCPE是正方形,CPCD6,此时点落在的延长线上(不符合,舍去)如图,设BC、AB中点分别为M、N,连接MN、DN,当E点落在MN上时,由折叠可知,DECD,CPPE,CDEP90,BC9,AC12,CM,CD6,DN,MN6,在RtDEN中,DE2DN2+EN2,62NE2+()2,NE,EM6,在RtPEM中,PE2EM2+PM2,CP2(CP)2+(6)2,CP;综上所述,CP的值为2或,故答案为:2或【点睛】本题考查翻折变换(折叠问题),熟练掌握直角三角形的性质,折叠的性质,能够分类讨论并画出适合的图形是解题的关键三、解答题1、(1)CDEF

19、,CD=EF;(2)结论成立,理由见解析;(3)1或2【分析】(1)如图所示,连接CE,延长BD交CE于H,先证明BADCAE得到BD=CE,ABD=ACE,然后证明四边形CDFE是平行四边形,即可得到CDEF,CD=EF;(2)连接CE,延长BD交CE于点H,交AC于点G, 类似(1)进行证明即可;(3)分两种情况:当D在直线AC的左侧和当D在直线AC的右侧,分别讨论求解即可【详解】解:(1)CDEF ,CD=EF,理由如下:如图所示,连接CE,延长BD交CE于H,ABC和ADE均为等腰直角三角形,BACDAE90,AB=AC,AE=AD,BADCAE(SAS),BD=CE,ABD=ACE,

20、ABD+ADB=90,ADB=CDH,ACE+CDH=90,BHC=90,BHE=90,由旋转的性质可得BDF=90,BD=FD,BDF=BHE=90,BD=CE,DFCE,四边形CDFE是平行四边形,CDEF,CD=EF;(2)结论成立,理由如下:连接CE,延长BD交CE于点H,交AC于点G,BAC=DAE=90,DAB=EAC=90-DAC,AB=AC ,AD=AE,ADBAEC(SAS),BD=CE ,DBA=ECA,BGA+DBA=90,BGA=CGH ,DBA=ECA,CGH+ECA=90,DHE=90,由旋转的性质可得BDF=90,BD=FD,DFCE,DF=BD,DFCE,CD=

21、CE, 四边形DCEF是平行四边形 CDEF,CD=EF;(3)如图3所示,当DAC=45时,设AC与DE交于H,ADE=90,EAC=ADC=45,又AD=AE,;,由(2)可知四边形DFEC是平行四边形,;如图4所示,当DAC=45时,DAC=ADE=45,ACDE,同理可证四边形CEFD是平行四边形,综上所述,DEF的面积为1或2【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质与判定,全等三角形的性质与判定,平行四边形的性质与判定,解题的关键在于能够正确作出辅助线构造平行四边形求解2、这个多边形的边数为7【分析】设这个多边形的边数为n,根据多边形的内角和公式(n-2)180与外角和

22、定理列出方程,求解即可【详解】解:设这个多边形的边数为n,根据题意,得(n-2)180=3360-180,解得n=7答:这个多边形的边数为7【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360,与边数无关3、(1);(2)存在,15【分析】(1)根据正多边形的外角和,求得内角的度数,根据等腰三角形性质和三角形内角和定理即可求得的度数;(2)根据(1)的结论,将代入求得的值即可【详解】解:(1)正多边形的每一个外角都相等,且等于则正多边形的每个内角为,根据题意,正多边形的每一条边都相等,则所在的等腰三角形的顶角为:,另一个底角为,当时,当时,当时,故答案为:(2)存在设存在

23、正n边形使得,解得【点睛】本题考查了正多边形的外角和与内角的关系,等腰三角形的性质和三角形内角和定理,根据正多边形的外角与内角互补求得内角是解题的关键4、这个多边形的边数为8【分析】设这个多边形的边数为n,根据多边形内角和及外角和可进行求解【详解】解:设这个多边形的边数为n,由题意得:,解得:,这个多边形的边数为8【点睛】本题主要考查多边形内角和与外角和,熟练掌握多边形的内角和与外角和是解题的关键5、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3)【分析】(1)只需要利用SAS证明BCFACG即可得到答案;(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FMBC于M,求出,即可推出,则,即:;法二:过F作,先证明FCNFCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出,再证明 得到,则;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论