两因素方差分析_第1页
两因素方差分析_第2页
两因素方差分析_第3页
两因素方差分析_第4页
两因素方差分析_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、两因素方差分析第一页,共七十一页。 【例1】对某地区5类海产食品中无机砷含量进行检测,测定结果见表1,其中藻类以干重计,其他4类以鲜重计。试分析不同类型海产品的砷含量差异是否显著。 2.1 各处理重复数相等的方差分析表1 五种不同类型海产品中无机砷含量0.57第二页,共七十一页。 这是一个单因素试验,k=5,n=7。现对此试验结果进行方差分析: 1、计算各项平方和与自由度 第三页,共七十一页。 2、列出方差分析表,进行F检验 表2 不同类型海产品无机砷含量方差分析表第四页,共七十一页。根据df1=dft=4,df2=dfe=30查临界F值 得:F0.05(4,30) =2.69,F0.01(4

2、,30) =4.023、多重比较 采用新复极差法SSR因为FF0.01(4,30),即P0.01,表明品种间无机砷含量差异达到1%显著水平,有极显著差异。第五页,共七十一页。 因为MSe=0.0084,n=7,所以 为: 根据dfe=30,秩次距k=2,3,4,5由附表6查出=0.05和=0.01的各临界SSR值,乘以 ,即得各最小显著极差,所得结果列于表2。 第六页,共七十一页。 表3 SSR值及LSR值第七页,共七十一页。表4 不同类型海产品无机砷含量差异重比较结果 (SSR法)结论: 藻类中无机砷含量极显著高于贝类、软体类、甲壳类以及鱼类;贝类、软体类、甲壳类3种海产品无机砷含量差异不显

3、著,但均极显著高于鱼类。类型平均数/ (mg/kg)差异显著性=0.05=0.01藻类(D)1.341aA贝类(B)0.637bB软体类(E)0.636bB甲壳类(C)0.613bB鱼类(A)0.393cC第八页,共七十一页。第三节 两因素试验的方差分析考查两个因素对试验指标的影响情况第九页,共七十一页。3.1 交叉分组资料的方差分析 设试验考察A、B两个因素,A因素分a个水平,B因素分b个水平 。 所谓交叉分组是指A因素每个水平与B因素的每个水平都要搭配 ,两者交叉搭配形成ab个水平组合即处理,试验因素A 、B在试验中处于平等地位 。如果将试验单元分成 ab 个组,每组随机接受一种处理 ,因

4、而试验数据也按两因素两方向分组,这种试验数据资料称为两向分组资料,也叫交叉分组资料。 分无重复观测值和重复观测值两种类型。第十页,共七十一页。对于A、B两个试验因素的全部ab个水平组合,每个水平组合只有一个观测值(无重复), 全试验共有ab个观测值,其数据模式如表5所示。3.1.1 两因素无重复试验资料的方差分析第十一页,共七十一页。 表5 两因素无重复观测值的试验数据模式注:A因素有a个水平,B因素有b个水平,共计有ab个水平组合,每一组合观测一次,有ab个观测值(表5),xij 为A的第i水平与B的第j水平组合观测值。第十二页,共七十一页。A的第i水平b个观测值之和A的第i水平b个观测值的

5、平均数B的第j水平a个观测值之和B的第j水平a个观测值的平均数ab个观测值的总和ab个观测值的总平均数第十三页,共七十一页。 两因素无重复观测值试验资料的数学模型为: 式中, 为总平均数; (5-26) i,j分别为Ai、Bj的效应; i=i-, j=j-, i、j分别为Ai、Bj观测值总体平均数, 且i=0,j=0; ij为随机误差,相互独立,且服从N(0,2) 第十四页,共七十一页。 A因素的每个水平有b次重复,B因素的每个水平有a次重复,每个观测值同时受到A、B 两因素及随机误差的作用。因此全部 ab 个观测值的总变异可以分解为 A 因素水平间变异、B因素水平间变异及试验误差三部分;自由

6、度也相应分解。 离差平方和与自由度的分解如下:第十五页,共七十一页。 矫正数 总平方和 A因素离差平方和 B因素离差平方和各项离差平方和与自由度的计算公式为: 误差平方和 SSe=SST-SSA-SSB 总自由度 dfT=ab-1 A因素自由度 dfA=a-1 B因素自由度 dfB=b-1 误差自由度 dfe= dfT - dfA dfB =(a-1)(b-1) 第十六页,共七十一页。相应均方为第十七页,共七十一页。【例2】某厂现有化验员3人,担任该厂牛奶酸度(T)的检验。每天从牛奶中抽样一次进行检验,连续10天的检验分析结果见表6。试分析3名化验员的化验技术有无差异,以及每天的原料牛奶酸度有

7、无差异(新鲜牛奶的酸度不超过20 T ) 。化验员B1B2B3B4B5B6B7B8B9B10 xi.xi.A111.7110.8112.3912.5610.6413.2613.3412.6711.2712.68121.3312.13 A211.7810.712.512.3510.3212.9313.8112.4811.612.65121.1212.11 A311.6110.7512.412.4110.7213.113.5812.8811.4612.94121.8512.19 x.j35.1032.2637.2937.3231.6839.2940.7338.0334.3338.27364.3x.

8、j11.7010.7512.4312.4410.5613.1013.5812.6811.4412.76表6 牛奶酸度测定结果第十八页,共七十一页。A因素(化验员)有3个水平,即a=3;B因素(天数) 有10个水平 ,即 b =10 , 共有ab=310=30个观测值。 1 计算各项离差平方和与自由度第十九页,共七十一页。第二十页,共七十一页。第二十一页,共七十一页。 2 列出方差分析表,进行F检验 表7 资料的方差分析表变异来源SSdfMSF值显著性化验员间0.028320.01420.550日期间26.759192.9732115.240*误差0.4635180.0258合计27.25092

9、9结果表明,3个化验员的化验技术没有显著差异,不同日期牛奶的酸度有极显著差异。注:F0.01(9,18)=3.60第二十二页,共七十一页。3 多重比较 在两因素无重复观测值试验中,A因素每一水平的重复数恰为B因素的水平数b,故A因素的标准误为 ;同理,B 因 素 的 标准误对例5-4分析,a=3,MSe=0.0258。故根据 dfe=18,秩次距 k=2,3 ,10,查临界 q 值 ,计算最小显著极差LSR,见表8。第二十三页,共七十一页。 表8 q值与LSR值dfe秩次距kq0.05q0.01LSR0.05LSR0.011822.974.070.28 0.38 33.614.70.34 0.

10、44 44.00 5.090.37 0.47 54.285.380.40 0.50 64.495.60.42 0.52 74.675.790.43 0.54 84.825.940.45 0.55 94.966.080.46 0.57 105.076.20.47 0.58 第二十四页,共七十一页。B因素各水平均值多重比较结果见表9测定日期x.jx.j-10.56x.j-10.7511.44 11.70 12.43 12.44 12.68 12.76 13.10 B713.58 3.02* 2.83 2.14 1.88 1.15 1.14 0.90 0.82 0.48 B613.10 2.54 2

11、.35 1.66 1.40 0.67 0.66 0.42 0.34 B1012.76 2.20 2.01 1.32 1.06 0.33 0.32 0.08 B812.68 2.12 1.93 1.24 0.98 0.25 0.24 B412.44 1.88 1.69 1.00 0.74 0.01 B312.43 1.87 1.68 0.99 0.73 B111.70 1.14 0.95 0.26 B911.44 0.88 0.69 B210.75 0.19 B510.56 表9不同测定日牛奶酸度多重比较结果(q法)第二十五页,共七十一页。处理 均值 5%显著水平 1%极显著水平 B7 13.5

12、8 a A B6 13.10 b AB B10 12.76 bc BC B8 12.68 bc BC B4 12.44 c C B3 12.43 c C B1 11.70 d D B9 11.44 d D B2 10.75 e E B5 10.56 e E 附表:多重比较结果字母表示第二十六页,共七十一页。 结果表明,除B2与B5,B1与B9,B4与B3,B8与B3、B4,B10与B3、B4、B8差异不显著外,其余不同测定日间牛奶酸度均差异极显著或显著。酸度最高的是B7,最低的是B5和B2。从牛奶质量要求看,连续10d的牛奶酸度均在鲜奶范围内。第二十七页,共七十一页。 在进行两个因素或多个因素

13、的试验时,除了要研究每一个因素对试验指标的影响外,往往更希望知道因素之间的交互作用对试验指标的影响情况。 通过研究环境温度、湿度、光照、气体成分等环境条件对导致食品腐烂变质的酶和微生物的活动的影响有无交互作用,对有效控制酶和微生物活动,保持食品质量有着重要意义。第二十八页,共七十一页。 两个因素无重复观测值试验只适用于两个因素间无交互作用的情况; 若两因素间有交互作用, 则每个水平组合中只设 一个试验单位(观察单位)的试验设计是不正确的或不完善的。这是因为: (1)在这种情况下,SSe,dfe实际上是A、B 两因素交互作用平方和与自由度,所算得的MSe是交互作用均方 ,主要反映由交互作用引起的

14、变异。 (2)这时若仍按前述方法进行方差分析,由于误差均方值大(包含交互作用在内),有可能掩盖试验因素的显著性, 从而增大犯型错误的概率。 (3) 每个水平组合只有一个观测值,无法估计真正的试验误差,因而不可能对因素的交互作用进行研究。 第二十九页,共七十一页。交互作用交互作用:在多因素试验中一个因素对试验结果的影响依赖于另一因素所取的水平时,称两因素有交互作用。 在多因素对比试验中,某些因素对指标的影响往往是互相制约、互相联系的。即在试验中不仅因素起作用,而且因素间有时联合起来起作用,这种联合作用并不等于各因素单独作用所产生的影响之和,称这种联合作用为交互作用。例:某农场对四块大豆试验田作施

15、肥试验。每块田以不同的方式施以磷肥和氮肥,其产量如下:可以看出 当施氮肥和不施氮肥时,施以4公斤磷肥后的增产数量是不同的 当施磷肥和不施磷肥时,施以6公斤氮肥后的增产数量是不同的 若N, P分别起作用时增产为50, 30kg。但同时施时其效果并不是50+30=80kg,而是增产560-400=160kg,增加的80公斤则为交互作用的效果。P1=0P2=4P2-P1N1=040045050N1=6430560130N2-N130110第三十页,共七十一页。 对两因素和多因素等重复试验结果进行分析, 可以研究因素的简单效应、主效应和因素间的交互作用(互作效应)。3.2 两因素等重复试验的方差分析第

16、三十一页,共七十一页。下一张 首 页 退 出 上一张 三种效应 1简单效应(simple effect) 是指在某一因素同一个水平上,比较另一因素不同水平对试验指标的影响。第三十二页,共七十一页。三种效应 2主效应(main effect) 是指某一因素各水平间的平均差别。它与简单效应的区别是,主效应指的是某一因素各水平间的平均差别是综合了另一因素各水平与该因素每一水平所有组合的情况。第三十三页,共七十一页。三种效应 3. 互作效应(interaction effect) 如果某一因素的各简单效应随另一因素的水平变化而变化,而且变化的幅度超出随机波动的程度,则称两个因素间存在互作效应。第三十四

17、页,共七十一页。 设A、B两因素,A因素有a个水平,B因素有b个水平,共有ab个水平组合,每个水平组合有n次重复试验,则全试验共有abn个观测值。试验结果的数据模式如表10所示。 两因素等重复试验的方差分析第三十五页,共七十一页。表10 两因素等重复观测值试验数据模式 第三十六页,共七十一页。A因素B因素Ai合计xi.B1B2BbA1x1jlx111x121x1b1x112x122x1b2x1.x113x123x1b3x11nx12nx1bnx1j.x11.x12.x1b.x1j.x11.x12.x1b.A2两因素等重复试验数据模式(部分)第三十七页,共七十一页。表10中 每个组合处理n 次重

18、复之和B因素第j水平an个数据之和abn个数据总和A因素第i水平bn个数据之和第三十八页,共七十一页。其中, 为总平均数; i为Ai的效应; j为Bj的效应; () ij为Ai与Bj的互作效应。(5-32)两因素等重复试验资料的数学模型为:分别为Ai、Bj、Ai Bj观测值总体平均数;且第三十九页,共七十一页。 3.2.1 离差平方和与自由度分解其中,SSAB,dfAB为A因素与B因素交互作用平方和与自由度。 为随机误差,相互独立,且服从N(0,2)。第四十页,共七十一页。 若用SSAB,dfAB表示A、B水平组合间的平方和与自由度,即处理间平方和与自由度,则处理引起的变异可进一步剖分为A因素

19、、B因素及A、B交互作用三部分,于是SSAB、dfAB可分解为: 第四十一页,共七十一页。矫正数 总平方和与自由度因素水平组合平方和与自由度A因素平方和与自由度各项平方和、自由度及均方的计算公式如下:B因素平方和与自由度第四十二页,共七十一页。 交互作用平方和与自由度误差平方和与自由度所以,相应均方为因素A的方差因素B的方差A、B互作的方差误差方差第四十三页,共七十一页。3.2.2 列方差分析表,进行F检验第四十四页,共七十一页。FA显著,应对A因素各水平的平均数作多重比较,其平均数标准误为:FB显著,应对B因素各水平的平均数作多重比较,其平均数标准误为: FAB显著,应对各组合的平均数作多重

20、比较,其平均数标准误为: 下一张 首 页 退 出 上一张 3.2.3 多重比较第四十五页,共七十一页。配方(A)食品添加剂(B)B1B2B3A1876875866A2978997866A37810779689表11 3种食品添加剂对3种不同配方蛋糕质量的影响【例3】现有3种食品添加剂对3种不同配方蛋糕质量的影响试验结果,试作方差分析第四十六页,共七十一页。 A因素(配方)有3个水平,即a=3;B因素(食品添加剂)有3个水平,即b=3;共有ab=33=9个水平组合;每个水平组合重复数n=3;全试验共有=333=27个观测值。 (1) 计算各项平方和与自由度 第四十七页,共七十一页。第四十八页,共

21、七十一页。第四十九页,共七十一页。变异来源 平方和 自由度 均 方 F 值 显著性 A因素间 6.23 23.12 5.29*B因素间 1.56 20.78 1.32AxB 22.21 45.55 9.41*误 差 10.67 180.59 总变异 40.67 26表12 方差分析表(2)列出方差分析表,进行F检验查临界F值: F0.05(2,18)=3.55,F0.01(2,18)=6.01; F0.01(4,18)=4.58。 因为, FAF0.05(2,18); FBF0.05(2,18);FABF0.01(4,18),表明不同配方、食品添加剂与配方的互作对蛋糕质量有显著或极显著影响,而

22、食品添加剂间的差异不显著。因此,应进一步进行不同处理均数间、配方各水平均数间 的多重比较。第五十页,共七十一页。 配方 因为A因素各水平的重复数为bn,故A因素各水平的标准误为: 对本例而言, (3)多重比较由dfe=18,秩次距k=2,3,从附表5中查出SSR0.05与SSR0.01的 临 界值 ,计算LSR值 ,结果列于表13。第五十一页,共七十一页。表13 配方各水平均数比较SSR值与LSR值dfe秩次距SSR0.05SSR0.01LSR0.05LSR0.011822.974.070.76 1.04 33.124.270.80 1.09 处理 均值 5%显著水平 1%极显著水平 A3 7

23、.9 a A A2 7.7 a AB A1 6.8 b B 表14 配方间平均数多重比较结果(SSR法) 因素A主效应分析,结果表明配方A3与A1之间差异极显著,A2与A1差异显著,A2与A3差异不显著。第五十二页,共七十一页。 因B因素各水平的重复数为an,故B因素各水平的标准误为:在本例,B因素的影响不显著,不必进行多重比较。 以上所进行的多重比较,实际上是A、B两因素主效应的检验。若A、B因素交互作用不显著,则可从主效应检验中分别选出A、B因素的最优水平,得到最优水平组合;若A、B因素交互作用显著,则应进行水平组合平均数间的多重比较,以 选出最优水平组合,同时可进行简单效应的检验。 第五

24、十三页,共七十一页。 因为水平组合数通常较大(本例ab=44=16),采用最小显著极差法进行各水平组合平均数的比较,计算较麻烦。为了简便起见,常采用LSD法。第五十四页,共七十一页。 因为水平组合的重复数为n,故水平组合的标准误为: 本例 各水平组合平均数间的比较第五十五页,共七十一页。水平组合均值 5%显著水平 1%极显著水平 A3B39.3a A A2B18.7ab AB A1B18.0abc AB A3B27.7 bc ABC A2B27.3 bc BC A2B37.0 cd BC A1B26.7 cd BC A3B16.7 cd BC A1B35.7 d C 表15个水平组合平均数多重比较结果(SSR法)分析结果表明,A3B3,A2B1,A1B1为优组合,按此组合选用配方和添加剂可望得到较好的蛋糕质量。第五十六页,共七十一页。 以上的比较结果可以看出,当A、B因素

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论