精品试题北师大版八年级数学下册第六章平行四边形专项测评练习题(含详解)_第1页
精品试题北师大版八年级数学下册第六章平行四边形专项测评练习题(含详解)_第2页
精品试题北师大版八年级数学下册第六章平行四边形专项测评练习题(含详解)_第3页
精品试题北师大版八年级数学下册第六章平行四边形专项测评练习题(含详解)_第4页
精品试题北师大版八年级数学下册第六章平行四边形专项测评练习题(含详解)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北师大版八年级数学下册第六章平行四边形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定2、如图,在ABC和ADE中,ABA

2、C,ADAE,且EADBAC80,若BDC160,则DCE的度数为()A110B118C120D1303、在下列条件中能判定四边形ABCD是平行四边形的是( )AAB=BC,AD=DCBABCD,AD=BCCABCD,B=DDA=B,C=D4、如图,在六边形中,若,则( )A180B240C270D3605、如图,在平行四边形中,于点,把以点为中心顺时针旋转一定角度后,得到,已知点在上,连接若,则的大小为( )A140B155C145D1356、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对7、如图,求A+B+C+D+E+F( )A90B130C180D36

3、08、正多边形的一个内角等于144,则该多边形是( )A正八边形B正九边形C正十边形D正十一边形9、一个多边形的内角和是外角和的5倍,则这个多边形是()A12B11C10D910、如图,在RtABC中,ACB90,AC1,AB4,点D是斜边AB的中点,以CD为底边在其右侧作等腰三角形CDE,使CDEA,DE交BC于点F,则EF的长为()A3BCD3.5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,D是BC中点,AE平分BAC,AEBE,AB=3,AC=5,则DE=_2、如图,在中,为上的两个动点,且,则的最小值是_3、如果一个正多边形每一个内角都等于1

4、35,那么这个正多边形的边数是 _4、如图,平面直角坐标系中,有,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为_5、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形中,E是上一点(1)用尺规完成以下基本操作:在下方作,使得,交于点F(保留作图痕迹,不写作法)(2)在(1)所作的图形中,已知,求的度数2、在等腰直角三角形ABC中,点E、F分别为A

5、B,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90得到AG,连接GC,HB(1)如图1,求证:;(2)如图2,连接GF,HG,HG交AF于点Q点H在运动的过程中,求证:;若,当为等腰三角形时,EH的长为_3、阅读材料,回答下列问题:(材料提出)“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成(探索研究)探索一:如图1,在八字形中,探索A、B、C、D之间的数量关系为 ;探索二:如图2,若B36,D14,求P的度数为 ;探索三:如图3,CP、AG分别平分BCE、FAD,AG反向延长线交CP于点P,则P、B、D之间的数量关系为 (模型应用

6、)应用一:如图4,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线BP,CP相交于点P则A (用含有和的代数式表示),P (用含有和的代数式表示)应用二:如图5,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线所在的直线相交于点P,P (用含有和的代数式表示)(拓展延伸)拓展一:如图6,若设Cx,By,CAPCAB,CDPCDB,试问P与C、B之间的数量关系为 (用x、y表示P)拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,猜想P与B、D的关系,直接写出结论 4、一个多边形的内角和是外角和的2倍,求这个多边形的边数

7、5、如图,在边长为6的等边中,点为边上任意一点,连接将线段绕点逆时针旋转,点的对应点是点,连接、(1)如图1,求证:;(2)如图2,在旋转过程中,取、的中点、,连接和,当时,试猜想与的大小关系,写出你猜想的关系式,并证明;(3)如图2,在整个旋转过程中,的长度是否发生变化,若不变化,直接写出的值,若变化,请直接写出的取值范围-参考答案-一、单选题1、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和

8、,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键2、C【分析】先根据四边形的内角和可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据角的和差即可得【详解】解:在四边形中,即,在和中,故选:C【点睛】本题考查了四边形的内角和、三角形全等的判定定理与性质,正确找出两个全等三角形是解题关键3、C【分析】根据两组对角分别相等的四边形是平行四边形进行判断即可【详解】解:能判定四边形ABCD是平行四边形的是ABCD,B=D,理由如下:ABCD,B+C=180,B=D,D+C=180, ADBC,四边形ABCD是平行四边形,故选:C【点睛

9、】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键4、C【分析】根据多边形外角和求解即可【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键5、C【分析】根据题意求出ADF,根据平行四边形的性质求出ABC、BAE,根据旋转变换的性质、结合图形计算即可【详解】解:ADC=70,CDF=15,ADF=55,四边形ABCD是平行四边形,ABC=ADC=70,ADBC,BFD=125,AEBC,BAE=20,由旋转变换的性质可知,BFG=BAE=20,DFG=DFB+BFG=145,故选:C【点睛】本题考查的是平行四边形的性质、旋转变换的性

10、质,掌握旋转前、后的图形全等是解题的关键6、D【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质7、D【分析】连接AD,由三角形内角和外角的关系可知E+FADE+DAF,由四边形内角和是360,即可求BAF+B+C+CDE+E+F360【详解】解如图,连接AD,1E+F,1ADE+DAF,E+FADE+DAF,BAD+B+C+CDA360,BAF+B+C+CDE+E+F360BAF+B+C+CDE+E+F36

11、0故选:D【点睛】本题考查三角形的外角的性质、四边形内角和定理等知识,解题的关键是灵活应用所学知识解决问题,属于基础题8、C【分析】根据多边形内角与外角互补,先求出一个外角,正多边形的外角和等于360,又可表示成36n,列方程可求解:【详解】解: 设所求正多边形边数为n,正多边形的一个内角等于144,正多边形的一个外角=180-144=36,则36n=360,解得n=10故选:C【点睛】本题考查正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程,掌握正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程,利用外角和列方程是解题关键9、A【分析】设这个多边形的边数为n,依据多边形

12、的内角和是它的外角和的5倍列方程,即可得到n的值【详解】解:设这个多边形的边数为n,依题意得(n-2)180=5360,解得n=12,这个多边形是十二边形,故选:A【点睛】本题主要考查了多边形的内角和与外角和,解题时注意:多边形的外角和等于36010、D【分析】根据勾股定理求出BC,根据直角三角形的性质得到CD=AD,证明ACDF,根据勾股定理计算,得到答案【详解】解:在RtABC中,ACB=90,AC=1,AB=4,则BC=,在RtABC中,ACB=90,点D是斜边AB的中点,CD=AB=AD,DCA=A,CDE=A,CDE=DCA,ACDF,EFC=ACB=90,ACDF,点D是斜边AB的

13、中点,DF=AC=,CF=BC=,设EF=x,则ED=x+=CE,在RtEFC中,EC2=EF2+CF2,即(x+)2=x2+()2,解得:x=3.5,即EF=3.5,故选:D【点睛】本题考查的是勾股定理、直角三角形的性质,等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2二、填空题1、1【分析】延长BE交AC于F,由已知条件可得BAF是等腰三角形,由等腰三角形的性质可得BE=EF,又因为BD=CD是,所以DE是BCF的中位线,由三角形中位线定理即可求出DE的长【详解】解:延长BE交AC于F,AE平分BAC,BEAE,BAE=CAE,AEB=AEF=9

14、0,在ABE与AFE中,ABEAFE(ASA),BE=EF,AB=AF,AB=3,AF=3,AC=5,CF=AC-AF=5-3=2,D为BC中点,BD=CD,DE是BCF的中位线,DE=CF=1,故答案为:1【点睛】本题考查了三角形中位线定理以及等腰三角形的判定,解题的关键是正确作出辅助线,得到BAF是等腰三角形2、【分析】过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN

15、是平行四边形,MDAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键3、【分析】根据题意一个正多边形每一个内角都等于,求得这个正多边形每一个外角都等于,再用外角和除以一个外角的度数求得正多边形的边数,最后根据多边形的内角和公式求解即可【详解】这个多边形的边数是,则内角和

16、是,故答案为:【点睛】本题考查多边形的外角和、正多边形的外角与边数的关系灵活使用多边形的内角、外角解决问题是难点4、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标【详解】平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBO,D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4)故答案为:(9,4)、(-3,4)、(3,-4)【点睛】本题考查了坐标与图形性质和平行四

17、边形的性质,注意:平行四边形的对边平行且相等5、1【分析】根据基本作图,得到EC是BCD的平分线,由ABCD,得到BEC=ECD=ECB,从而得到BE=BC,利用线段差计算即可【详解】根据基本作图,得到EC是BCD的平分线,ECD=ECB,四边形ABCD是平行四边形,ABCD,BEC=ECD,BEC=ECB,BE=BC=5,AE= BE-AB=5-4=1,故答案为:1【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键三、解答题1、(1)见解析;(2)【分析】(1)延长,在射线上截取两点,使得,作的

18、垂线,交于点,在上截取,作的中垂线,交于点,则即为所求;(2)根据三角形的外角性质以及平行线的性质即可求得的度数【详解】(1)如图所示,根据作图可知,四边形是平行四边形,四边形是平行四边形则即为所求;(2),由(1)可知【点睛】本题考查了尺规作图-作垂线,平行四边形的性质,三角形的外角性质,平行线的性质,掌握基本作图是解题的关键2、(1)见解析;(2)见解析,或2【分析】(1)由旋转的性质可得,再由ABC是的等腰直角三角形,可得,由此即可证明;(2)证明AEHAFG(SAS),可得AFG=AEH=45,从而根据两角的和可得结论;分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时

19、,分别根据等腰三角形的性质可得结论【详解】(1)证明:由旋转得:, ABC是的等腰直角三角形, ;(2)证明:在等腰直角三角形ABC中, 点E,F分别为AB,AC的中点,EF是的中位线, ,; 分两种情况:i)如图3,AQ=QG时,AQ=QG,QAG=AGQ,AGAH且AG=AH,AHG=AGH=45,AHG=AGH=HAQ=QAG=45,EAH=FAH=45,AE=AF,AH=AH,AEHAFH(SAS),AHE=AHF,AHE+AHF=180,AHE=AHF=90,EAH=AEH=45,AH=EH,由得,即,;ii)如图4,当AG=QG时,GAQ=AQG,AEH=AGQ=45,GAQ=AQ

20、G=67.5,EAQ=HAG=90,EAH=GAQ=67.5,AHE=EAH=67.5,EH=AE=2H为线段EF上一动点(不与点E,F重合),不存在AG=AQ的情况综上,当AQG为等腰三角形时,HE=2或,故答案为:或2【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,三角形中位线定理,第二问要注意分类讨论,不要丢解3、A+BC+D; 25;P;+180,P; ;P;2PBD180【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得BAPDAP,BCPDCP,结合(1)

21、的结论可得2PB+D,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得A+180,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,再结合已知条件即可求得答案;拓展二:运用探索一的结论及角平分线定义即可求得答案【详解】解:探索一:如图1,AOB+A+BCOD+C+D180,AOBCOD,A+BC+D,故

22、答案为A+BC+D;探索二:如图2,AP、CP分别平分BAD、BCD,12,34,由(1)可得:1+B3+P,2+P4+D,BPPD,即2PB+D,B36,D14,P25,故答案为25;探索三:由D+21B+23,由2B+232P+21,+得:D+2B+21+23B+23+2P+21D+2B2P+BP故答案为:P应用一:如图4,延长BM、CN,交于点A,M,N,+180,AMN180,ANM180,A180(AMN+ANM)180(180+180)+180;BP、CP分别平分ABC、ACB,PBCABC,PCDACD,PCDP+PBC,PPCDPBC(ACDABC)A,故答案为:+180,;应

23、用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,M,N,+180,A180,BP平分MBC,CP平分NCR,BP平分ABT,CP平分ACB,由应用一得:PA,故答案为:;拓展一:如图6,由探索一可得:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,Cx,By,CAPCAB,CDPCDB,CDBCABCBxy,PABCAB,PDBCDB,P+CABB+CDB,P+CDBC+CAB,2PC+B+(CDBCAB)x+y+(xy),P,故答案为:P;拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,PADBAD,PCD90+BCD,

24、由探索一得:B+BADD+BCD,P+PADD+PCD,2,得:2P+BAD2D+180+BCD,得:2PBD+180,2PBD180,故答案为:2PBD180【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可4、这个多边形的边数是6【分析】根据多边形的外角和为360,内角和公式为:(n-2)180,由题意可知:内角和=2外角和,设出未知数,可得到方程,解方程即可【详解】解:设这个多边形是n边形,由题意得:(n-2)180=3602,解得:n=6这个多边形的边数是6【点睛】此题主要考查了多边形的外角和,内角和公式,解一元一次方程,做题的关键是正确把握内角和公式为:(n-2)180,外角和为3605、(1)见解析;(2)FG=FC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论