




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、章节同步练习2022年浙教版初中数学 章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)2、下列因式分解正确的是()A.ab+bc+bb(a+c)B.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a3、下列各
2、式从左到右的变形,属于因式分解的是( )A.B.C.D.4、已知mn2,则m2n24n的值为()A.3B.4C.5D.65、下列各式中,正确的因式分解是( )A.B.C.D.6、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.57、下列分解因式正确的是()A.B.C.D.8、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.19、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)2
3、10、已知,则代数式的值为( )A.B.1C.D.211、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)12、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+2301260113、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy
4、)axayC.x22x1x(x2)1D.(x1)(x3)x24x314、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+b)21C.x481y4(x2+9y2)(x+3y)(x3y)D.(a2+2a)28(a2+2a)+12(a2+2a)(a2+2a8)+1215、已知,则 的值是( )A.B.C.45D.72二、填空题(10小题,每小题4分,共计40分)1、分解因式:3a(xy)2b(yx)_2、请从,16,四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_3、分解因式:x2y6xy9y_4、已知,则的值为_5、因式分解
5、a39a_6、分解因式:_7、若,则_8、分解因式:x27xy18y2_9、由多项式与多项式相乘的法则可知:即:(ab)(a2abb2)a3a2bab2a2bab2b3a3b3即:(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方和公式同理,(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方差公式请利用公式分解因式:64x3y3_10、RSA129是一个129位利用代数知识产生的数字密码曾有人认为,RSA129是有史以来最难的密码系统,涉及数论里因数分解的知识,在我们的日常生活中,取款、上网等都需要密码,有一种用“因式分解”法产生的密码方便记忆如,多项式x4y4,因
6、式分解的结果是(xy)(x+y)(x2+y2)若取x9,y9时,则各因式的值分别是:xy0,x+y18,x2+y2162,于是就可以把“018162”作为一个六位数的密码对于多项式4x3xy2,若取x10,y10,请按上述方法设计一个密码是 _(设计一种即可)三、解答题(3小题,每小题5分,共计15分)1、因式分解: (1) (2)2、分解因式:3、分解因式:(1)2x218;(2)3m2n12mn12n;(3)(ab)26(ab)9;(4)(x29)236x2-参考答案-一、单选题1、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D
7、.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.2、B【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.【详解】解:A.ab+bc+bb(a+c+1),因此选项A不符合题意;B.a29(a+3)(a3),因此选项B符合题意;C.(a1)2+(a1)(a1)(a1+1)a(a1),因此选项C不符合题意;D.a(a1)a2a,不是因式分解,因此选项D不符合题意;故选:B.【点睛】本题考查因式分解,涉及提公因式、平方差、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.
8、3、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4、B【分析】先根据平方差公式,原式可化为,再把已知代入可得,再应用整式的加减法则进行计算可得,代入计算即可得出答案.【详解】解:=把代入上式,原式=,把代入上式,原式=22=4.故选:B
9、.【点睛】本题考查了运用平方差公式进行因式分解,解题的关键是熟练掌握平方差公式.5、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.6、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合
10、题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.7、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.8、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m、n
11、的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.9、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2
12、,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.11、D【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从
13、左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.12、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.13、A【分析】把一个多项式化为几个整
14、式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.14、C【分析】根据因式
15、分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.15、D【分析】直接利用完全平方公式:a22ab+b2(ab)2,得出a,b的值,进而得出答案.【详解】解:x22ax+b(x3)2x26x+9,2a6,b9,解得:a3,故b2a2923272.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.二、填空题1、【分
16、析】根据提公因式法因式分解即可.【详解】3a(xy)2b(yx)=故答案为:【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.2、4a2-16=4(a-2)(a+2)【分析】任选两式作差,例如,4a2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a2-16,=(2a)2-42,=(2a-4)(2a+4),=4(a-2)(a+2)故4a2-16=4(a-2)(a+2),故答案为:4a2-16=4(a-2)(a+2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题.3、【分析】根据因式分解的方法求解即可.分解因式的
17、方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4、-4【分析】由ab8,得到a8b,代入ab160,得到(b4)20,根据非负数的性质得到结论.【详解】解:ab8,a8b,ab160,(8b)b16b28b16(b4)20,(b4)20,b4,a4,a2b42(4)4,故答案为:4.【点睛】本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键.5、;【分析】先提取公因式a,再根据平方差公式
18、进行二次分解即可求得答案.【详解】a39a=故答案为:【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.6、【分析】先提出公因式 ,再利用平方差公式进行因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.7、15【分析】将原式首先提取公因式xy,进而分解因式,将已知代入求出即可.【详解】解:x2y5,xy3, .故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.8、【分析】根据十字相乘法因式分解即可.【详解】x27xy18y2,故答案为:.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.9、【分析】根据题意根据立方差公式因式分解即可.【详解】64x3y3故答案为:【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.10、101030(或103010或301010)【分析】先将多项式4x3xy2因式分解,再将x10,y10代入,求得各个因式的值,排列即可得到一个六位数密码.【详解】解:4x3xy2x(4x2y2)x(2xy)(2x+y),当x10,y10时,x10,2xy10,2x+y30,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宁夏货运从业资格证题库及答案
- 2025年河源货运从业资格证试题库及答案
- 【课件】认识三角形第4课时+三角形的高课件+北师大版七年级数学下册
- 《终端维护员培训之》课件
- 《优化方法习题》课件
- 校园疫情突发应对手册
- 《探索与创新:课件中的著作权解析》课件
- 纺织品视觉传达中的创新策略试题及答案
- 销售管理项目建议书
- 产品生命周期对广告设计的影响分析试题及答案
- 2025届东北三省四市高三第二次联考英语试卷含答案
- 2025-2030中国振动监测系统行业市场发展趋势与前景展望战略研究报告
- 合肥高新美城物业有限公司招聘笔试题库2025
- 《词汇构建法:课件中的词根词缀解析》
- 华为系统面试题及答案
- 2025年山东省济南市历城区中考一模物理试题(原卷版+解析版)
- Unit 7 第1课时 Welcome to the unit【基础深耕】七年级英语下册高效课堂(译林版2024)
- 2025年第33批 欧盟REACH SVHC高度关注物质清单247项
- 漳州市城市规划管理技术规定
- 2024年江苏省南京市中考物理试卷真题(含答案)
- K30自动生成及计算试验记录
评论
0/150
提交评论