




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于Matlab的模糊聚类分析及其应用管理数学实验课程汇报学号:2120111705姓名:贾珊1预备知识1基于MATLAB的模糊聚类分析的传递方法2实例应用3Contents1.预备知识31.预备知识聚类分析和模糊聚类分析模糊相似矩阵模糊等价矩阵模糊矩阵的 - 截矩阵模糊传递闭包和等价闭包4定义一:(模糊)聚类分析 在科学技术,经济管理中常常需要按一定的标准(相似程度或亲疏关系)进行分类。对所研究的事物按一定标准进行分类的数学方法称为聚类分析。 由于科学技术,经济管理中的分类往往具有模糊性,因此采用模糊聚类方法通常比较符合实际。我们不能明确地回答 “是” 或 “否”, 而是只能作出 “在某种程
2、度上是” 的回答,这就是模糊聚类分析。 定义三:模糊等价矩阵 若 X =x1, x2, , xn 为有限论域时,X 上的模糊等价关系R 是一个矩阵(称为模糊等价矩阵),它满足下述三个条件:(1) 自反性:rii=1, i =1, 2, , n。(2) 对称性:rij= rji, i,j =1, 2, , n。(3) 传递性: R R R,即 定义四:模糊矩阵的截矩阵设A = (aij)mn,对任意的0, 1,称A= (aij()mn,为模糊矩阵A的 - 截矩阵, 其中 当aij 时,aij() =1;当aij 时,aij() =0. 显然,A的 - 截矩阵为布尔矩阵. 定义五:模糊传递闭包设
3、RF ( X X ),称 t(R) 为 R 的传递闭包,如果 t(R) 满足:(1) 传递性:(t(R)2 t(R) ;(2) 包容性:R t(R) ;(3) 最小性:若 R是 X 上的模糊传递关系,且 R R t(R) R,即 R 的传递闭包t(R)是包含 R 的最小的传递关系。定义六:模糊等价闭包设 RF ( X X ),称 e(R) 为 R 的等价闭包,若 e(R) 满足下述条件:(1) 等价性:e(R) 是 X 上的模糊等价关系。(2) 包容性:R e(R)。(3) 最小性:若 R 是 X 上的模糊等价关系,且 R R e(R) R 。 显然,R 的等价闭包是包含 R 的最小的等价关系
4、。重要定理设 RF ( X X ) 是相似关系 ( 即 R 是自反、对称模糊关系 ) ,则e(R) = t(R) ,即模糊相似关系的传递闭包就是它的等价闭包。 在实际问题中建立的模糊关系,多数情况下都是相似关系,定理给我们提供了一个求相似关系的等价闭包的方法。当论域为有限集时,此法很简便,即对相似矩阵 R ,求 R2, R4, 当 RkRk = Rk 时,便有 e(R) = t(R) = Rk 。2.1 特征抽取,建立原始数据矩阵假设待分类对象的集合为 X = X1, X2, , Xn ,集合中的每个元素具有 m 个特征,设第 i 个对象 Xi 的第 j ( j = 1, 2, , m ) 个
5、特征为 xij,则 Xi 就可以用这 m 个特征的取值来描述,记Xi = ( xi1, xi2, , xim) ( i =1,2,n )于是,得到原始数据矩阵为:2.2 数据标准化处理描述事物特征的量纲是各种各样的, 为了便于分析和比较,从而在计算的过程中消除这种干扰。 因此要对矩阵进行标准化处理, 这可以有各种类型的方法, 如平移-标准差变换和平移-标准差变换,从而可以把矩阵尽量转化为标准化矩阵。Matlab程序-bzh1.m function Y=bzh1(X)a,b=size(X);C=max(X);D=min(X);Y=zeros(a,b);for i=1:a for j=1:b Y(
6、i,j)=(X(i,j)-D(j)/(C(j)-D(j); %平移极差变化进行数据标准化 endendfprintf(标准化矩阵如下:Y=n); disp(Y)end2.3 标定, 建立模糊相似矩阵针对上述的标准化矩阵 , 计算各分类对象间的相似程度, 从而建立模糊相似矩阵 R= (rij) n n, 这个过程又称为标定, 计算标定的方法是很多的, 主要包括三大类方法: (1)相似系数法; (2)距离法; (3)主观评分法。三类方法各有不同的适用范围, 不同的问题需要的方法是不一样的。(1)相似系数法 -夹角余弦法相似系数法 -相关系数法其中,19(2)距离法rij = 1 c d (xi,
7、xj )其中c为适当选取的参数.海明距离欧氏距离切比雪夫距离d (xi, xj ) = | xik- xjk | , 1km20(3)主观评分法请有经验的人来分别对 Xi 与 Xj 的相似性打分,设有 s 个人参加评分,若第 k 个人 (1 k s) 认为 Xi 与 Xj 相似的程度为 aij(k) (在 0,1 中),他对自己评分的自信度也打分,若自信度分值是 bij(k) ,则可以用下式来计算相似系数:Matlab程序-biaod2.m function R=biaod2(Y,c) a,b=size(Y); Z=zeros(a);R=zeros(a);for i=1:a for j=1:a
8、 for k=1:b Z(i,j)=abs(Y(i,k)-Y(j,k)+Z(i,j); R(i,j)=1-c*Z(i,j);%绝对值减数法-欧氏距离求模糊相似矩阵 end endendfprintf(模糊相似矩阵如下:R=n); disp(R)end 当 X、Y、Z 为有限论域时,即 X = x1, x2, , xn, Y = y1, y2, , ym ,Z = z1, z2, , zl ,则 Q、R、S (= Q R)均可表示为矩阵形式:Q = (qij)nm , R = (rjk)ml , S = (sik)nl 其中S 称为模糊矩阵 Q 与 R 的乘积。 在当论域为有限集时,传递闭包法很
9、简便,即对相似矩阵 R ,求 R2, R4, 当 RkRk = Rk 时,便有 e(R) = t(R) = Rk 。24Matlab程序-cd3.m function B=cd3(R)a=size(R);B=zeros(a);flag=0;while flag=0for i= 1: a for j= 1: a for k=1:a B( i , j ) = max(min( R( i , k) , R( k, j) ) , B( i , j ) ) ;%R与R内积,先取小再取大 end endendif B=R flag=1;else R=B;%循环计算R传递闭包endendMatlab程序-
10、jjz4.m function D k =jjz4(B)L=unique(B);a=size(B);D=zeros(a);for m=length(L):-1:1 k=L(m); for i=1:a for j=1:a if B(i,j)=k D(i,j)=1; else D(i,j)=0;%求截距阵,当bij 时,bij() =1;当bij 时,bij() =0 end end endfprintf(当分类系数k=:n);disp(L(m);fprintf(所得截距阵为:n);disp(D);end3.案例分析283.案例分析环境单元分类每个环境单元可以包括空气、水分、土壤、作物等四个要素。
11、环境单元的污染状况由污染物在四要素中含量的超限度来描写。假设有五个单元 x1, x2, x3, x4, x5,它们的污染数据如下表所示。空气水分土壤作物x15532x22345 x35523x42341x52451原始矩阵X:X = 5 5 3 2 2 3 4 5 5 5 2 3 2 3 4 1其动态分类如图 3.47 所示:=1 x1 x3 x4 x5 x2 0.8 0.6 0.5 0.4动态聚类图Y=bzh1(X)标准化矩阵如下:Y= 1.0000 1.0000 0.3333 0.2500 0 0 0.6667 1.0000 1.0000 1.0000 0 0.5000 0 0 0.666
12、7 0 0 0.5000 1.0000 0 R=biaod2(Y,0.1)模糊相似距离矩阵如下:R= 1.0000 0.6917 0.9417 0.7417 0.7583 0.6917 1.0000 0.6833 0.9000 0.8167 0.9417 0.6833 1.0000 0.6833 0.7000 0.7417 0.9000 0.6833 1.0000 0.9167 0.7583 0.8167 0.7000 0.9167 1.0000B=cd3(R)模糊相似矩阵R的传递闭包如下:t(R)= 1.0000 0.7583 0.9417 0.7583 0.7583 0.7583 1.00
13、00 0.7583 0.9000 0.9000 0.9417 0.7583 1.0000 0.7583 0.7583 0.7583 0.9000 0.7583 1.0000 0.9167 0.7583 0.9000 0.7583 0.9167 1.0000jjz4(B)当分类系数是k=: 1所得截矩阵为: 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1当分类系数是k=: 0.9250所得截矩阵为: 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1当分类系数是k=: 0.9417所得截矩阵为: 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1当分类系数是k=: 0.9167所得截
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 魔法师动漫课件观看
- 高龄孕妇课件
- 济宁市2024-2025学年九年级下学期语文期末测试试卷
- 高速换护栏安全知识培训课件
- 高职生国防教育配套课件
- 电脑知识培训记录课件
- 电脑知识培训学堂心得课件
- 计算机信息系统集成服务合同
- 第1课《消息二则》课件-2025-2026学年统编版(2024)语文八年级上册
- 电缆安全小知识培训内容课件
- 北师大版五年级下册数学口算题题库1200道带答案可打印
- 托管老师岗前培训
- 新苏教版六年级上册《科学》全一册全部课件(含19课时)
- 护理品管圈QCC之提高手术物品清点规范执行率
- 二年级上册生命.生态.安全 全册教案
- 高尔夫基础培训ppt课件
- 有机化学第五章 脂环烃
- 微型钢管桩专项施工方案
- 铁路货物装载加固规则
- 机械加工的常用基础英语名词术语翻译对照大全
- Would-you-mind和Do-you-mind讲解学习
评论
0/150
提交评论