多元函数极值和最值_第1页
多元函数极值和最值_第2页
多元函数极值和最值_第3页
多元函数极值和最值_第4页
多元函数极值和最值_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于多元函数极值与最值第1页,共25页,2022年,5月20日,19点35分,星期三1. 连续函数的极值(1) 极值可疑点 :使导数为0 或不存在的点(2) 第一充分条件过由正变负为极大值过由负变正为极小值(3) 第二充分条件为极大值为极小值回顾:第2页,共25页,2022年,5月20日,19点35分,星期三一、 多元函数的极值 定义: 若函数则称函数在该点取得极大值(极小值).例如 :在点 (0,0) 有极小值;在点 (0,0) 有极大值;在点 (0,0) 无极值.极大值和极小值统称为极值,使函数取得极值的点称为极值点.的某邻域内有机动 目录 上页 下页 返回 结束 第3页,共25页,202

2、2年,5月20日,19点35分,星期三2、驻点 使一阶偏导数同时为零的点称为函数的驻点驻点极值点注意第4页,共25页,2022年,5月20日,19点35分,星期三第5页,共25页,2022年,5月20日,19点35分,星期三时, 具有极值定理2 (充分条件)的某邻域内具有一阶和二阶连续偏导数, 且令则: 1) 当A0 时取极小值.2) 当3) 当时, 没有极值.时, 不能确定 , 需另行讨论.若函数机动 目录 上页 下页 返回 结束 驻点第6页,共25页,2022年,5月20日,19点35分,星期三例1.求函数解: 第一步 求驻点.得驻点: (1, 0) , (1, 2) , (3, 0) ,

3、 (3, 2) .第二步 判别.在点(1,0) 处为极小值;解方程组的极值.求二阶偏导数机动 目录 上页 下页 返回 结束 第7页,共25页,2022年,5月20日,19点35分,星期三在点(3,0) 处不是极值;在点(3,2) 处为极大值.在点(1,2) 处不是极值;机动 目录 上页 下页 返回 结束 第8页,共25页,2022年,5月20日,19点35分,星期三例2.讨论函数及是否取得极值.解: 显然 (0,0) 都是它们的驻点 ,在(0,0)点邻域内的取值, 因此 z(0,0) 不是极值.因此为极小值.正负0在点(0,0)并且在 (0,0) 都有 可能为机动 目录 上页 下页 返回 结束

4、 第9页,共25页,2022年,5月20日,19点35分,星期三二、最值应用问题函数 f 在闭域上连续函数 f 在闭域上可达到最值 最值可疑点 驻点边界上的最值点特别, 当区域内部最值存在, 且只有一个极值点P 时, 为极小 值为最小 值(大)(大)依据机动 目录 上页 下页 返回 结束 第10页,共25页,2022年,5月20日,19点35分,星期三例3.解: 设水箱长,宽分别为 x , y m ,则高为则水箱所用材料的面积为令得驻点某厂要用铁板做一个体积为2根据实际问题可知最小值在定义域内应存在,的有盖长方体水问当长、宽、高各取怎样的尺寸时, 才能使用料最省?因此可断定此唯一驻点就是最小值

5、点.即当长、宽均为高为时, 水箱所用材料最省.机动 目录 上页 下页 返回 结束 第11页,共25页,2022年,5月20日,19点35分,星期三第12页,共25页,2022年,5月20日,19点35分,星期三第13页,共25页,2022年,5月20日,19点35分,星期三三、条件极值极值问题无条件极值:条 件 极 值 :条件极值的求法: 方法1 代入法.求一元函数的无条件极值问题对自变量只有定义域限制对自变量除定义域限制外,还有其它条件限制例如 ,转化机动 目录 上页 下页 返回 结束 第14页,共25页,2022年,5月20日,19点35分,星期三方法2 拉格朗日乘数法例如第15页,共25

6、页,2022年,5月20日,19点35分,星期三方法2 拉格朗日乘数法.如方法 1 所述 ,则问题等价于一元函数可确定隐函数的极值问题,极值点必满足设 记例如,故 故有机动 目录 上页 下页 返回 结束 第16页,共25页,2022年,5月20日,19点35分,星期三引入辅助函数辅助函数F 称为拉格朗日( Lagrange )函数.利用拉格极值点必满足则极值点满足:朗日函数求极值的方法称为拉格朗日乘数法.机动 目录 上页 下页 返回 结束 第17页,共25页,2022年,5月20日,19点35分,星期三推广拉格朗日乘数法可推广到多个自变量和多个约束条件的情形. 设解方程组可得到条件极值的可疑点

7、 . 例如, 下在条件机动 目录 上页 下页 返回 结束 求函数的极值.第18页,共25页,2022年,5月20日,19点35分,星期三例5.要设计一个容量为则问题为求x , y ,令解方程组解: 设 x , y , z 分别表示长、宽、高,下水箱表面积最小.z 使在条件水箱长、宽、高等于多少时所用材料最省?的长方体开口水箱, 试问 机动 目录 上页 下页 返回 结束 第19页,共25页,2022年,5月20日,19点35分,星期三得唯一驻点由题意可知合理的设计是存在的,长、宽为高的 2 倍时,所用材料最省.因此 , 当高为机动 目录 上页 下页 返回 结束 第20页,共25页,2022年,5

8、月20日,19点35分,星期三内容小结1. 函数的极值问题第一步 利用必要条件在定义域内找驻点.即解方程组第二步 利用充分条件 判别驻点是否为极值点 .2. 函数的条件极值问题(1) 简单问题用代入法如对二元函数(2) 一般问题用拉格朗日乘数法机动 目录 上页 下页 返回 结束 第21页,共25页,2022年,5月20日,19点35分,星期三设拉格朗日函数如求二元函数下的极值,解方程组第二步 判别 比较驻点及边界点上函数值的大小 根据问题的实际意义确定最值第一步 找目标函数, 确定定义域 ( 及约束条件)3. 函数的最值问题在条件求驻点 . 机动 目录 上页 下页 返回 结束 第22页,共25页

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论