下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Word 高一数学必修一知识点总结4篇 高一数学必修一学问点总结最新4篇由第八区为您收集整理,盼望在您写作【高一必修一数学】时能有一些参考与启发。 高一数学必修一学问点总结 篇一 集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能推断一个给定的东西是否属于这个整体。 把讨论对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是的,不行重复的。 (3)元素的无序性:集合中元素的位置是可以转变的,并
2、且转变位置不影响集合 3、集合的表示: (1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来a,b,c b、描述法: 区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 x?R|x32,x|x32 语言描述法:例:不是直角三角形的三角形 Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a?A (2)元
3、素不在集合里,则元素不属于集合,即:aA 留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_N+ 整数集Z 有理数集Q 实数集R 高一数学必修一学问点总结 篇二 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1、元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是公平的,没
4、有先后挨次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列挨次是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示: 如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 1、 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 2、集合的表示方法:列举法与描述法。 留意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或N+ 整数集Z 有理数集Q 实数集R 关于属于的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A 列举法:把集合
5、中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-32的解集是x?R| x-32或x| x-32 4、集合的分类: 1、有限集 含有有限个元素的集合 2、无限集 含有无限个元素的集合 3、空集 不含任何元素的集合 例:x|x2=-5 二、集合间的基本关系 1、包含关系子集 留意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
6、2、相等关系(55,且55,则5=5) 实例:设 A=x|x2-1=0 B=-1,1 元素相同 结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AA 真子集:假如AB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A) 假如 AB, BC ,那么 AC 假如AB 同时 BA 那么A=B 3、 不含任何元素的集合叫做空集,记为 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1、交集的定义:一般地,由全部属于A且属于B的元素所
7、组成的集合,叫做A,B的交集。 记作AB(读作A交B),即AB=x|xA,且xB。 2、并集的定义:一般地,由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作A并B),即AB=x|xA,或xB。 3、交集与并集的性质:AA = A, A=, AB = BA,AA = A, A= A ,AB = BA。 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集) (2)全集:假如集合S含有我们所要讨论的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:CU(C
8、 UA)=A (C UA) (CUA)A=U 高一数学必修一学问点总结 篇三 学问点1 I、定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c (a,b,c为常数,a0,且a打算函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以打算开口大小,IaI越大开口就越小,IaI越小开口就越大、) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II、二次函数的三种表达式 一般式:y=ax2+bx+c(a,b,c为常数,a0) 顶点式:y=a(xh)2+k抛物线的顶点P(h,k) 交点式:y=a(xx?)(xx?)仅限于与x轴有交点A
9、(x?,0)和B(x?,0)的抛物线 注:在3种形式的相互转化中,有如下关系: h=b/2ak=(4acb2)/4ax?,x?=(bb24ac)/2a III、二次函数的图像 在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。 IV、抛物线的性质 1、抛物线是轴对称图形。对称轴为直线x=b/2a。对称轴与抛物线的交点为抛物线的顶点P。 特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2、抛物线有一个顶点P,坐标为 P(b/2a,(4acb2)/4a) 当b/2a=0时,P在y轴上;当=b24ac=0时,P在x轴上。 3、二次项系数a打算抛物线的开口方
10、向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 学问点2 1、抛物线是轴对称图形。对称轴为直线 x=b/2a。 对称轴与抛物线的交点为抛物线的顶点P。 特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2、抛物线有一个顶点P,坐标为 P(b/2a,(4acb2)/4a) 当b/2a=0时,P在y轴上;当=b24ac=0时,P在x轴上。 3、二次项系数a打算抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4、一次项系数b和二次项系数a共同打算对称轴的位置。 当a与b同号时
11、(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右。 5、常数项c打算抛物线与y轴交点。 抛物线与y轴交于(0,c) 6、抛物线与x轴交点个数 =b24ac0时,抛物线与x轴有2个交点。 =b24ac=0时,抛物线与x轴有1个交点。 =b24ac0时,抛物线与x轴没有交点。X的取值是虚数(x=bb24ac的值的相反数,乘上虚数i,整个式子除以2a) 学问点3 对数函数 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x
12、的对称图形,由于它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)明显对数函数。 高一数学必修一学问点总结 篇四 集合及其表示 1、集合的含义: “集合”这个词首先让我们想到的是上体育课或者开会时老师常常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。 所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么全部高一二班的
13、同学就构成了一个集合,每一个同学就称为这个集合的元素。 2、集合的表示 通常用大写字母表示集合,用小写字母表示元素,如集合A=a,b,c。a、b、c就是集合A中的元素,记作aA,相反,d不属于集合A,记作d?A。 有一些特别的集合需要记忆: 非负整数集(即自然数集)N正整数集N_或N+ 整数集Z有理数集Q实数集R 集合的表示方法:列举法与描述法。 列举法:a,b,c 描述法:将集合中的元素的公共属性描述出来。如x?R|x-32,x|x-32,(x,y)|y=x2+1 语言描述法:例:不是直角三角形的三角形 例:不等式x-32的解集是x?R|x-32或x|x-32 强调:描述法表示集合应留意集合的代表元素 A=(x,y)|y=x2+3x+2与B=y|y=x2+3x+2不同。集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长安全教育培训食品安全
- 家长培训课件资源app
- 2026年数据中心中央空调年度维护合同协议
- 2026年海鲜批发分销合同协议书
- 2026年危险品国内运输合同
- 2026年仓储物流配送保险合同范本
- 数据保密合同2026年使用条款
- 2026年公园照明服务合同协议
- 2026年水路货物运输合同
- 土地个人承包合同
- 2025福建德化闽投抽水蓄能有限公司招聘4人(公共基础知识)综合能力测试题附答案
- “十五五规划纲要”解读:和美乡村宜居宜业
- 广东省广州市2026届高三年级上学期12月调研测试数学(广州零模)(含答案)
- 2025至2030中国光学存储设备行业市场深度研究与战略咨询分析报告
- 手机供货协议书
- 喷绘安装合同范本
- 2025年区块链技术化妆品溯源发展报告
- 福建厦门大学教育研究院行政秘书招聘笔试真题2024
- 民俗的特征教学课件
- 全反力、摩擦角、自锁现象、辅助角-习题答案
- 山东省潍坊市2023-2024学年高一上学期期末考试地理试题(含答案)
评论
0/150
提交评论