




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
有关固体磁性的基本概念和规律在上个世纪电磁学的发展史中就开始建立了。19世纪中期:分子电流为基础——最初关于磁性介质的理论;19世纪后半期:发展了铁磁磁化现象的试验方法——确立磁化规律的基本要素——分子场初步假说和顺磁磁化的Curie定律;20世纪初期:发展了顺磁性的Langevin理论和铁磁性的Weiss理论;20世纪前半期和中期:量子力学的提出和整个物理学的发展——铁磁性,反铁磁性及 铁磁性理论的发展,并发展了许多新的物理实验技术,如电子磁性 ,核磁 及铁磁
等。§6.1
Magnetism
of
atoms(1)
Electronic
states
in
atoms
or
ionsSingle
electron
Hamiltonian(2li+1)-fold
degeneracySpin-orbit
couplingInclusion
of
Coulombinteraction
(CI)(2L+1)(2S+1)-fold
degeneracy(2J+1)-fold
degeneracyL-S
coupling;
(CI>LS)J-J
coupling.
(CI<LS)(2)
Hund’s
rulesThe
rules
that
determine
the
ground
state
of
an
atom.Under
the
condition
that
satisfies
Pauli
exclusion
principle,
Stakes
its
um;Under
the
condition
that
satisfies
Pauli
exclusion
principle,
Stakes
its um
where
L
is
the
largest;If
the
number
ofelectrons
inthe
outer
s is
less
than
the
half-filling,
thenJ=|L-S|;
if
the
number
of
electrons
in
the
outer
sis
larger
than
the
half-filling,
then
J=|L+S|.Cr+3
(3d3):
the
ground
state(S=3/2,
L=3,
J=3/2)2S+1LJ(3)
Atom
in
a
magnetic
fieldp→p+eAIntroduce
a
magnetic
field
B0
along
z
direction,Take
gauge:satisfyingLz(without
inclusion
of
spin)Presume
B0
is
weak,
the
perturbation
energy
up
to
theorder
isE=E0B0=0E=E0+ΔEB0≠0Zeeman
splitting321ML=0-1-2-3Magnetic
moment:Intrinsic
orbitmagnetic
moment(indep.
B0)Induced
magnetic
moment:(dep.
B0)Origin
of
diamagnetismThe
case
including
spin:(Spin
moment-magnetic
fieldinteraction)Total
magnetic
moment:The
perturbation
energy
up
to
theorder
is(Landé
g-factor)Intrinsic
magnetic
moment:§6.2
Magnetism
in
solidsFive
basic
types
of
magnetism
have
been
observed
and
classified
onthe
basis
of
the
magnetic
behavior
of
materials
in
response
to
magneticfields
at
different
temperatures.
These
types
of
magnetism
are:ferromagnetism,
ferrimagnetism,
antiferromagnetism,paramagnetism,
and
diamagnetism.(1)
Diamagnetism
of
saturated
electronic
structuresThe
ionic
and
covalent
solids,
similar
to
noble
gases, have
filledelectron
structures.Paramagnetic
moment:(2)
Paramagnetism
ofbandcarriersElectrons
in
the
conduction
band
of
semiconductors
are
less,
and
onemay
presume
they
satisfy
Boltzmann
statistics.The
average
moment
of
band
electrons:At
room
temperature
T,(3)
Paramagnetism
of
impurities
and
defects(ESR,
EPR)Measuring
gfactorFrom
web(4)
Pauli
Paramagnetism
and
Landau
diamagnetismEFEFH=0H≠0,nonequilibriumH≠0In
Chapter
3,
we
gotPauli
paramagnetismPauliEnergy
levels
of
an
electron
in
a
magnetic
field
are
called
Landau
levels:Landau(5)
Knight
shiftThe
Knight
shift
is
a
shift
in
the
nuclear
magnetic
resonance
frequencyof
a
paramagnetic
substance
published
in
1949
by
the
Americanphysicist.The
Knight
shift
is
due
to
the
conductionelectrons
in
metals.
Theyintroduce
an
"extra"
effective
field
at
the
nuclear
site,
due
to
the
spinorientations
of
the
conduction
electrons
in
the
presence
of
an
externalfield.
This
is
responsible
for
the
shift
observed
in
the
nuclear
magneticone
is
the
Pauliponent
waveresonance.
The
shift
comes
from
two
sources,paramagnetic
spin
susceptibility,
the
other
is
thefunctions
at
the
nucleus.Depending
on
the
electronic
structure,
Knight
shift
may
be
temperaturedependent.
However,
in
metals
which
normally
have
a
broad
featurelesselectronic
density
of
states,
Knight
shifts
are
temperature
independent.Knight
shift:§6.3
Theory
of
paramagnetismCurie
lawCurie-Weiss
lawAtomicmomentLangevin
theory:PierreCurieAverage
moment:(Brillouin
function)Paul
LangevinMarcel
Louis
Brillouin1854-1948Curie
lawCurie
constantVan
Vleck
paramagnetismQuench
of
orbital
angular
momentumBy
Patrik
Fazekas§6.4
Theory
of
ferromagnetismMagneticsMagneticwallsTfθ
θp1/χCurie
lawFMmagnetic
hysteresis
loopMsMrHsHc(1)
Weiss
molecular
field
theory
on
spontaneous
magnetizationTwo
assumptions
for
ferromagnets:The
existence
of
an
internal
field---molecular
field;The
existence
of
magnetic
s.Pierre-Ernest
Weiss(1865-1940)x0T1BJ(x)T2MT3(T3>
T2>
T1)(2)
Paramagnetism
at
high
temperatures(3)
Localized
electron
model
for
spontaneous
magnetizationGeneralization:Werner
Heisenberg#
of
nearestneighborsmagnetizationWeiss分子场的实质来源于原子间的交换作用,而交换作用来源于Pauli不相容原理。(4)
Spin
waves1930年,Bloch基于Heisenberg
model提出了自旋波的概念,用于
在低温下自发磁化强度与温度的关系,得到了M(T)随T3/2变化的规律,这就是著名的Bloch
T3/2定律。Felix
Bloch根据Heisenberg
model,铁磁体的基态是所有自旋沿同一方向排列。在低温下,有一部分自旋将处于激发态,最低的激发态对应于一个自旋反转。由于同近邻的自旋间有耦合,一个自旋的反转必定引起整个系统自旋的不同程度的反转,产生集体激发,这种自旋的集体激发被称为自旋波(spin
wave),其对应的准粒子为磁振子(magnon).A
boson经典的自旋波理论是利用自旋角动量S在磁场中的进动关系,可以求得一维单原子链的自旋波的色散关系:自旋波的量子理论是利用Holstein-Primakoff变换关系,将自旋算符变换成磁振子算符,即可求出上述色散关系。和声子类似,自旋波得能量是量子化的:在低温时,波数为k的自旋波的平均粒子数:注意到每激发一个磁振子相当于一个自旋反向,则有(D:
spin-wave
stiffness)At
low
TRandy
S.
Fishman
et
al,
Phys.
Rev.
Lett.
99,
157201
(2007).Spin
Wave
Excitations
in
a
Frustrated
Magnet
CuFeO2Due
toantiferromagneticinteractions
betweennearest-neighbor
Fe3+spins
in
each
hexagonalplane,
CuFeO2
is
ageometrically-frustratedantiferromagnet.(5)
Itineran ectron
magnetism
(band
magnetism)金属磁性材料中原子磁矩并不是整数,例如铁是2.21μB
,钴是1.70
μB
,镍是0.6μB
,它们与 原子磁矩的大小相差甚远。局域电子模型不能说明金属磁性材料的磁性,而能带模型却比较成功地说明了金属磁性材料的磁性及原子词句的非整数性。能带理论认为,过渡金属中3d与4s带是交叠在一起的,3d电子虽然存在能带结构,但它们又相域,电子间的交换作用使自旋简并的电子能带发生。考虑电子间交换作用后,能带 成不对称形式,可以看出自旋向上的电子比自旋向下的电子数目多,在3d能带中形成未被抵消的自发磁矩,因而可以发生自发磁化。54.420.583d10According
to
Stoner
model,
the
conditionshould
be
satisfied,
where
U
is
the
on-site
Coulomb
interaction
betweenelectrons.金属磁矩的非整数性可以这样解释:一般认为S带的电子对铁磁性没有贡献,d带贡献的大小依赖于能带的性质。如镍,有10个价电子,饱和磁化说明每个原子只有0.58个电子磁矩,能带模型认为,它是9.42个价电子处在d带,0.58个电子处在s带,9.42个电子中,5个电子自旋向上,4.42个电子自旋向下。这即解释了为什么没个原子只有0.58个电子磁矩。§6.5
Antiferromagnetism
and
ferrimagnetism(1)
Antiferromagnetism相邻磁矩反平行排列,大小相等,方向相反,互相抵消,对外呈现出总磁矩为零。在温度TN时,自发的反平行排列
了,成为Neel温度。在Neel温度以上,
顺磁性。T>TN:Louis
Néel(1904-2000)NT
反铁磁性是靠什么机制产生的呢?Cramer和Anderson先后用超交换模型即使了MnO晶体的铁磁性,超交换作用有时也称为间接交换作用。TχparamagnetismχTferromagnetismTccomplexTχantiferromagnetismTN-θCurieCurie-WeissNeelPhilip
Warren
Anderson(2)
Ferrimagnetism铁磁性实际上是一种特殊的反铁磁性,在研究其自发磁化时,需要将晶格分为两个子晶格,然后按照铁磁性的理论在每个子格子上进行,铁磁体具有
温度。四氧化三铁是典型的
铁磁体,以及其它的铁氧体:Fe(A-Fe)O4型,A=Mn2+、Fe2+、Ni2+、Zn2+。铁磁体具有两个主要特点:(1)有相当大的磁化强度,但比铁磁体里的磁化强度小;(2)这类材料的电阻率都相当大,具有半导体的性质,可用铁氧体材料来制作微波元件等。§6.6
Low-dimensional
magnetismLow
spatial
dimensionality:
D
<
3One-Dimensional
(1D)Systemschainswireszigzagladdersalternating
chainsrandom
chainsTwo-Dimensional
(2D)
Systemssquaretrianglebrick-wallKagomébherringboneTwo-Dimensional
(2D)
Systems¼
depleted
square
latticeRectangular
latticeInterpenetratedb
latticeTurtle
back
lattice?+=
10.8-11.2
AstronMolecular
magnetsMn12-acFe8(1980)V15
:
low
spin
molecule
with
spin
1/2S=1/2J~-800KJ'~J1~-150
KJ''~
J2
~
-300KAFM
couplingNi12-WheelS=12[Ni12(chp)12(O2CMe)12(THF)6(H2O)6]Cr8:
S=0(8
AFMcoupledS=3/2
Cr
centers)[Cr8F8(O2CCMe3]1612
FM
coupled
S
=
1nickel
centresNi24-wheel:AFM,
but
notdiamagneticMn6Cr4Cr8Laboratoire
Louis
Néel,
Wolfgang
Wernsdorfer1D
&
2D
Ising
model
can
be
exactly
solved.(Si
:
up
or
down)1D
exact
solution
(Ising1925):Magnetization:When
H➔0,
M➔0.
No
spontaneous
magnetization
for
T>0.Specific
heat:Susceptibility:Ising
ModelErnst
IsingZero-field
susceptibility
for
Ising
chain
with
spin
½
(Fisher
1963)Specific
heatMeasure
parallel
to
determinethe
sign
of
J.2D
exact
solution
(Onsager
1944)Specific
heat
on
a
square
lattice:T/Tc1It
is
found
that
CH=0(T)
is
logarithmic
divergent
at
T=Tc:M/NgμBMagnetization
(1952):for
T<TcCritical
pointLarsOnsager2D
Ising
model
exhibits
a
phase
transition
at
T>0:OnsagerBlote
et
al
(SC,1969)Critical
exponentsExact
solutions
of
2D
Ising
model
establish
the
foundationof
modern
theory
of
the
critical
phenomenon.Critical
temperatureHeisenberg
ModelExact
resultsHeisenberg
S=1/2
AFM
chain
by
Bethe
ansatz(Bethe
1931,
Hulthen
1938)Energy
of
the
ground
state:For
anisotropic
exchange
integrals
(Orbach
1958,
Walker
1959)Werner
HeisenbergHans
Albrecht
BetheExcitation
energy
(des
Cloizeaux
&
Pearson
1962)xyFor
S=1/2
AFM
chain,the
excitationfrom
the
ground
state
(singlet)
to
theexcited
state
(triplet)
is
gapless:-0Susceptibility
at
T=0
(Griffiths
1964,&1966)Spin-spin
correlation
function
(Shanker
et
al
1990)Power-law
decayLieb,
Schultz
and
Mattis
TheoremConsider
a
1D
AFM
chain
with
the
Hamiltonian,satisfying
the
periodic
boundary
condition
SN+1=S1,
N=even.
ForS=odd
integer/2,
e.g.,
S=1/2,
3/2,
…,
the
excitation
from
theground
state
to
the
excited
state
is
gapless.Ground
state
for
Heisenberg
antiferromagnet(Anderson
1951)Ground
state
for
Heisenberg
ferromagnetFor
the
Heisenberg
ferromagnet
(J<0),
the
fully
ferromagnetic
stateФFM
is
one
of
the
ground
state
multiplet,
whereMagnetization
plateaus
(Oshikawa
et
al
1997)Consider
zero-temperature
quantum
spin
chains
in
a
uniformmagnetic
field,
with
axial
symmetry,For
integer
or
half-integer
spin,
S,the
magnetization
curve
can
haveplateaus,
and
the
magnetizationper
site
m
is
topologicallyzed
as
n(S-m)=
integer
atthe
plateaus,
where
n
is
the
period
1/6of
the
ground
state
determined
bythe
explicit
spatial
structure
ofHamiltonian.mH/JConfirmed
both
theoretically
and
experimentallyHida
1994plateaun=3,
S=1/2(3-site
translation
invariant)Mermin-Wagner
TheoremFor
the
quantum
Heisenberg
model,
with
theshort-range
interactions
satisfying,there
cannotexist
any
magnetic
(including
FM
and
AFM)long-range
order
at
any
nonzero
temperature
in
one
andtwodimensions.CorollaryIf
there
exists
a
gap
from
the
ground
state
to
the
excitedstate,
there
will
be
no
magnetic
LRO
in
1D
and
2D
atzero
temperature.Goldstone
TheoremIf
there
exists
a
magnetic
LRO,
then
the
excitation
fromthe
ground
state
to
the
excited
state
will
be
gapless.Jeffrey
GoldstoneN.
David
MerminMagnetic
Long-Range
OrderHeisenberg
AFModelMagneticLong-RangeOrder
in
theGround
StateMagneticLong-RangeOrder
at
T>0D=1No(owing
to
quantumfluctuations)No(owing
tothermalfluctuations)D=2S=1/2,
Yes(numerical)S≥1,
Yes(rigorous)No(owing
tothermalfluctuations)D=3S=1/2,
YesS
≥1,
Yes(rigorous)S=1/2,
Yes(?)S
≥1,
Yes(rigorous)Heisenberg
Model
on
Square
LatticeModified
Spin-wave
theory
(Takahashi
1989)Uniform
susceptibilityFor
quantum
Heisenberg
chains
with
spin
integer,there
will
be:the
ground
state
is
unique;there
exists
a
gap
between
the
singletground
state
and
the
triplet
excited
state;the
ground-state
spin
correlation
functiondecays
exponentially.Within
the
continum
limit,
Haldane
observedSROCorrelation
lengthΔ
c-1Haldane
gap:c:
spin-wave
velocity~JSHaldane
Scenario
(1983)F.DuncanM.HaldaneAKLT
Model
(1987)S=1
Heisenberg
AFM
spin
chain
with
biquadratic
interactions(Affleck,
Kennedy,
Lieb,
Tasaki)The
ground
state
is
a
valence
bond
state
(VBS)(<i,j>:
nearest
neighbors)It
can
be
proven
thatAs
the
eigenvalues
of
H
0,
the
VBSis
the
unique
singlet
ground
state.They
proved
it
exists
an
excited
gap
from
theground
state:
=0.75JConfirmation
of
Haldane
conjecture!Bilinear-Biquadratic
ModelS=1
Heisenberg
AFM
chain
with
bilinear
and
biquadratic
interactionsCritical
points
separatingHaldane
phase
fromother
phasesΔ=0Haldane
phase:-
/4<
θ
<
/4Δ
=0.411J
at
θ=
0for
S=1,
=6Δ
=0.085J
at
θ=
0for
S=2,
=49Δ
=0Can
half-integer
spin
chains
have
a
gap?(Oshikawa
et
al
1997)Translationally
invariant
spin
chains
in
anapplied
field
can
be
gapful
without
breakingtranslation
symmetry,
onlywhen
themagnetization
per
site,
m,
obeys
S-m=integer.Such
gapped
phases
correspond
to
plateaus
atthese zed
values
of
m.Half-integer
S
spinchainscanhave
“Haldane
gap
phase”
undersome
conditions.S=3/2,
m=1/2Quantum
Phase
TransitionsA
quantum
phasetransition
(QPT)
is
aphase
transition
betweendifferent
quantum
phases(phases
of
matter
at
zerotemperature).QPT
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论