优秀毕业论文 我国粮食产量预测的时间序列模型研究_第1页
优秀毕业论文 我国粮食产量预测的时间序列模型研究_第2页
优秀毕业论文 我国粮食产量预测的时间序列模型研究_第3页
优秀毕业论文 我国粮食产量预测的时间序列模型研究_第4页
优秀毕业论文 我国粮食产量预测的时间序列模型研究_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学位论文我国粮食产量预测的时间序列模型研究论文作者姓名:Xxxx申请学位专业:信息与计算科学申请学位类别:理学学士〔副教授〕论文提交日期:2021年06月5日我国粮食产量预测的时间序列模型研究摘要粮食是关系国民生计的重要战略物资,为做好粮食预测,本文介绍了时间序列的几种建模方法。通过分析1978-2021年我国粮食生产总量数据特点,建立了单积自回归移动平均模型ARIMA(p,d,q)。最终,利用Eviews6.0软件计算完成了我国粮食产量的预测。结果说明,在未来几年我国粮食产量在不受自然灾害影响的前提下,依然会进行缓慢增长。经分析,重大自然灾害对我国粮食产量影响严重,确保粮食产量要做好重大自然灾害预防。关键字:粮食产量;时间序列;ARIMA;预测ResearchforForecastingofChina’sGrainYieldBasedonTimeSeriesModelAbstractGrainisanimportantlivelihoodstrategyforthenationalrelationshipbetweenmaterial.Forecastforthegrain,thisthesisintroducesseveralmodelingmethodsoftimeserialsMethodandestablishesautoregressivemovingaveragemodelARIMA(p,d,q)byanalyzingcharacteristicsofChina’sgrainyieldfrom1978to2021.Finally,forecastingofChina’sgrainyieldisfinishedbymeansofEviews6.0andtheresultshowsthatChina’sgrainyieldwillstillgrowslowlyinthenextfewyearsifnotbeingaffectedbynaturaldisasters.Keywords:grainyield;timeserials;ARIMA;forecasting目录论文总页数:16页1 引言 1 课题背景 1 国内外研究现状 1 本课题研究的意义 2 本课题的研究方法 22 几种时间序列预测分析法简介 2 自回归〔AR〕模型 2 移动平均〔MA〕模型 3 自回归移动平均〔ARMA〕模型 3 差分自回归滑动平均〔ARIMA〕模型 4 ARIMA模型原理 4 ARIMA模型预测的根本程序 43 数据分析及模型建立 4 数据分析 4 数据平稳化 6 模型的定阶 8 模型优化 10 模型检验 11 模型有效性检验 11 模型预测 12结论 12参考文献 12附录 13致谢 15声明 16引言课题背景“国以民为本,民以食为天。〞粮食是关系国计民生的重要战略物资,粮食平安与社会的和谐、政治的稳定、经济的持续开展息息相关。我国是开展中的农业大国,耕地仅占世界10%,而人口却占世界的22%,十几亿人的粮食问题始终是头等大事。参加WTO以后,我国的粮食平安问题受到了国内外的广泛关注。我国粮食产量受多种因素影响,没有规律可循。国内外研究现状我国学者对粮食产量的预测模型总体上来说大致可以分为三大类:时间序列模型、回归模型和人工神经网络模型。指数平滑模型、灰色预测模型及基于马尔可夫链的预测模型等都属于时间序列模型。回归模型中使用比拟多的就是线性回归模型和双对数模型。人工神经网络模型是近几年才开始使用的基于生物学原理的预测系统。这些方法的优缺点分析如下:首先,指数平滑模型的原理和计算方法比拟简单,对历史数据的数量没有太大的要求。迟灵芝(2004)曾运用单指数平滑方法首先对我国1991—1999年的粮食产量进行拟合,计算出平均相对误差为0.104%,效果还是比拟理想的。但是模型中对平滑系数确实定直接关系到模型的精度问题,所以不同的平滑系数就可能造成结果的差异。林绍森等(2007)对三种预测模型的分析的结果证明了指数平滑法的预测误差最大。此外,由于模型本身在计算方法上的局限性,该方法只适用于近、短期预测。灰色预测模型也是比拟常用的粮食产量预测模型。迟灵芝(2002)对灰色预测方法和回归模型进行比拟分析,得出灰色预测的平均相对误差最小的结论。林绍森等(2007)对单指数平滑、自回归移动平均和灰色预测三种模型进行了比拟,他指出灰色预测模型比自回归预测模型和单指数平滑预测模型更适合长期的预测。线性(或非线性)回归模型的一个优点是可对变量之间进行因果分析,描述其内在的联系。很多学者利用这一方法建立了粮食产量模型,找到了影响粮食产量的主要因素。如李子奈(2000)的线性回归函数、石森昌等(2003)的双对数生产函数、李云松等(2002)、肖海峰等(2004)、程杰等(2007)的柯布—道格拉斯生产函数等等。虽然他们选取的变量都不尽相同,但是都证明了回归模型对粮食产量的拟合效果很好。但是回归方法受到解释变量的约束,一般也只用在近、短期预测中。神经网络模型是一种建立在生物学神经元根底上的一个不需要建立解释变量与被解释变量之间具体关系的数学模型。它可以通过隐含层的学习和训练实现输入元素与输出元素之间的非线性映射。该模型的模拟效果可以在王启平(2002)、禹建丽等(2004)的文章中看到。但是目前我国尚无比拟完善和成熟的理论指导网络模型,在神经网络的程序设计中对隐含层单元数及目标参数的设置都只能凭经验或者是经过反复的训练和测试才能确定。总之,每个模型都有其优点和缺乏之处。对于数据比拟少的短期预测问题,应用简单的指数进行平滑。对于结构复杂、影响因素众多的中长期问题一般用灰色预测模型。回归模型一般用来做因素分析,而且预测期较短。本课题研究的意义根据农业部发布的数据,1998年我国粮食产量曾经到达历史最高水平,此后几年连续多年呈现下滑态势,持续稳产增产根本没有超过3年。自2004年开始,中国连续四年粮食增产,2007年粮食产量突破了5亿吨。但是粮食生产是由诸多因素综合影响的不确定系统,未来我国粮食产量将如何变动,能否到达国家粮食平安的目标就成为一个很有意义的话题。有效地分析和预测我国粮食生产能力,对政策调整方向乃至保障粮食平安具有非常重要的价值。本课题的研究方法对于大多数时间数列是非平稳的,如果直接将非平稳时间序列当做平稳时间序列来进行回归分析,那么可能造成“伪回归〞,即变量间本来不存在相依关系,但回归结果却得出存在相依关系的错误结论。本文首先根据时间序列的散点图、自相关函数和偏自相关函数图识别其平稳性。然后对非平稳的时间序列数据进行平稳化处理,将其视为一个随机序列,分析此序列的特征并根据所识别出来的特征建立相应的时间序列模型。判断该模型\o"残差序列"残差序列是否为\o"白噪声序列"白噪声序列。通过检验后,利用此模型对粮食产量进行预测。几种时间序列预测分析法简介自回归〔AR〕模型如果时间序列是它的前期值和随机项的线性函数,即可表示为〔1〕那么称该时间序列是自回归序列,〔1〕式为自回归模型,记为AR〔p〕。实参数称为自回归系数,是模型的待估参数。随机项是相互独立的白噪声序列,且服从均值为0、方差为的正态分布。随机项与滞后变量不相关。不是一般性,在〔1〕中假定序列均值为0。假设,那么令,可将写成(1)式的形式。记为k步滞后算子,即,那么模型〔1〕可表示为〔2〕令模型可简写为:〔3〕AR〔p〕过程平稳的条件是滞后多项式的根均在单位圆外,即的根大于1。移动平均〔MA〕模型如果时间序列〔是它的当前和前期的随机误差项的线性函数,即可表示为〔4〕那么称该时间序列是移动平均序列,〔2〕式为q阶移动平均模型,记为MA(q)模型。实参数为移动平均系数,是模型的待估系数。引入滞后算子,并令那么模型〔4〕可简写为〔5〕移动平均过程无条件平稳。但希望AR过程与MA过程能相互表出,即过程可逆。因此要求滞后多项式的根都在单位圆外,经推导可得〔6〕其中,,其他权重可递推得到。称〔6〕为MA〔q〕模型的逆转形式,它等价与无穷阶的AR过程。自回归移动平均〔ARMA〕模型如果时间序列是它的当期和前期的随机误差项以及前期值的线性函数,即可表示为:〔7〕那么称该时间序列〔是自回归平均序列,〔7〕式为〔p,q〕阶的自回归移动平均模型,记为ARMA〔p,q〕。为自回归系数,为移动平均系数,都是模型的待估参数。引入滞后算子B,模型〔7〕可简记为〔8〕ARMA(p,q)过程的平稳条件是滞后多项式的根均在单位圆外。可逆条件是的根都在单位圆外。假设,那么称满足方程的平稳随机序列为p阶自回归模型,记为AR(p)模型。假设,那么称满足方程的平稳随机序列为q阶移动平均模型,记为MA(q)模型。显然,AR(p)模型和MA(q)模型都是ARMA(p,q)模型的特例。差分自回归滑动平均〔ARIMA〕模型ARIMA模型原理差分自回归滑动平均模型ARIMA〔p,d,q〕中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数〔阶数〕。ARIMA〔p,d,q〕模型是ARMA〔p,q〕模型的扩展。ARIMA〔p,d,q〕模型可以表示为:〔9〕其中L是滞后算子〔Lagoperator〕。ARIMA模型预测的根本程序〔一〕根据时间序列的\o"散点图"散点图、自相关函数和偏自相关函数图以ADF单位根检验其\o"方差"方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。〔二〕对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,那么需要对数据进行差分处理,如果数据存在异方差,那么需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。〔三〕根据时间序列模型的识别规那么,建立相应的模型。假设平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;假设平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,那么可断定序列适合MA模型;假设平稳序列的偏相关函数和自相关函数均是拖尾的,那么序列适合\o"ARMA模型"ARMA模型。〔四〕进行\o"参数估计"参数估计,检验是否具有统计意义。〔五〕进行\o"假设检验"假设检验,诊断残差序列是否为白噪声。〔六〕利用已通过检验的模型进行\o"预测分析"预测分析。数据分析及模型建立数据分析1978-2021年我国粮食产量〔单位:万吨〕如下表1:表1我国1978-2021年粮食产量年份粮食产量年份粮食产量1978199419791995198019961981325021997198235450199819831999198420001985200119862002198720031988394082004198920051990200619912007199220211993202153082注:数据来源于中国统计局网。建立时间序列模型之前需要检验序列的平稳性,只有平稳序列才能建立时间序列模型。利用EVIEWS数据分析软件对时间序列进行ADF检验,以判断其平稳性,当检验值〔Augmenteddickey-Fullerteststatistic〕的绝对值大于临界值的绝对值时,序列为平稳序列;否那么,为非平稳数据。利用EVIEWS6.0软件作出我国历年粮食产量的曲线图,见图1:图1我国粮食产量曲线图从曲线图中明显可以看到粮食产量总体呈上升趋势,在1998-2003年出现了明显下降,直观表现为非平稳序列。利用Eviews6.0对其进行单位根检验,检验结果为图2:图2粮食产量时间序列单位根检验由图中检验结果可以看出FOOD时间序列单位根为-0.972583大于10%水平下临界值,故该序列存在单位根,为非平稳时间序列。数据平稳化用Eviews将粮食产量时间序列做一阶差分并对其进行单位根检验,结果分别见图3和图4:图3我国粮食产量一阶差分图图4粮食产量一阶差分单位根检验结果图通过看图,粮食产量一阶差分后得到的序列在某一常数附近波动,可初步识别序列已平稳。并且ADF的检验值为-,分别小于不同检验水平的三个临界值,因此它通过了ADF检验,为一平稳序列。在这里应该注意的是要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,〔1〕序列的样本容量减小;〔2〕方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后假设数据的极差变大,说明差分过度。此处,我们认为一阶差分已可以消除序列的非平稳性。因此在ARIMA(p,d,q)模型中d=1。.模型的定阶ARIMA模型的定阶方法主要有如下三种:自相关和偏相关函数定阶法;FPS准那么;AIC和SC准那么。所谓自相关:构成时间序列的每个序列值之间的简单相关关系称为自相关。自相关程度由自相关系数度量,表示时间序列相隔k期的观测值之间的相关程度。其中,是样本量;为滞后期;代表样本数据的算术平均值。所谓偏自相关:对于时间序列,在给的的条件下,与之间条件相关关系。其相关程度用偏自相关系数度量,有,其中是滞后期的自相关系数,。首先我们通过考察平稳时间序列的自相关和偏相关的函数性质来进行定阶,利用Eviews6.0作出粮食产量一阶差分序列DFOOD的自相关-偏相关图,结果见图5:图5粮食产量一阶差分自相关-偏相关图从图中可以看出平稳序列DFOOD的自相关系数AC在K=5后很快趋于0,即自相关系数在4阶结尾,因此q=4;偏相关系数PAC在k=4很快趋于0,即偏相关系数在4阶截尾。于是,先建立ARMA(4,1,4)模型,并利用EVIEWS软件计算模型参数,具体参数值见图6:图6ARIMA(4,1,4)模型参数估计结果图模型优化观察参数计算结果,发现MA(3),MA(4)项的系数没有显著性。为简化模型,我们再利用AIC和SC准那么,即AIC和AC值最小原那么,进行项数筛选。最终得到AR(2)、AR(3)和MA(2)的系数具有显著性。Eviews6.0计算结果如图7:图7ARIMA(3,1,2)模型参数估计结果图我们由此得到模型的最终表达式:利用Eviews6.0软件绘制出所得模型的拟合值和实际值以及残差值的比拟,其结果见图8:图8拟合值和实际值的比拟图模型检验为确保模型的可靠性,需要对模型残差进行检验,看其是否为白噪声序列。利用Ewviews6.0软件对ARIMA(3,12)模型进行Q统计量检验,检验结果见图9:图9ARIMA(3,1,2)残差Q统计结果图模型的残差自相关-偏相关图,没有任何模式,残差序列平稳,该残差序列由一些无关的相互独立的随机变量组成。说明此模型拟合成功,可以进行预测。模型有效性检验预测模型有效性检验,即是利用未使用过的观测值评价模型的预测能力。用局部历史数据对模型进行回归并预测,将预测结果与实际值比拟,可以简单而有效地检验模型的预测效果。这里,我们对ARIMA(3,1,2)模型利用1978—2021年的数据进行回归,然后给出了的预测结果以及完整的历史数据,由以上模型预测出的2007-2021年的粮食产量FOOD和实际粮食产量以及相对误差见下表3:表32007-2021年估计值与实际值及相对误差年份200722082021估计值实际值53082相对误差2.2%1.1%1.4%由表可以看到相对误差最高为2.2%,均小于5%。预测结果比拟准确,能够根本拟合实际值。模型预测利用此模型对2021-2021年我国粮食产量进行预测,结果如表4:表42021-2021年我国粮食产量预测值即增长率年份202120212021估计值增长率1.78%1.70%1.75%由预测结果可以看起我国粮食产量在未来几年仍然会呈增长趋势,但增长率将处于波动状态,即我国粮食产量增长可能出现放缓。结论时间序列模型一般只能用于短期预测,对于中长期预测可能会出现误差累计情况,因此本模型只可对未来近几年的我国粮食产量进行预测。其次,观察拟合曲线会发现在1998-2000年的拟合效果较差,查阅资料发现1998年和2000年自然灾害比拟严重,分别遭受了特大洪水和罕见的全国性干旱〔建国以来干旱最为严重的年份之一〕。本模型无法排除突发严重自然灾害影响因素,所以本模型的预测结果只有在无重大自然灾害的前提下才具有价。在此前提下,本文成功预测了我国粮食产量在未来依然会增长,增长率会在1.75%波动,可会出现放缓。要保持我国粮食产量出现持续增长,除保持科技进步,更要加强自然灾害的预防。参考文献[1]梁仕莹,孙东升,杨秀平,刘合光.2021-2021年我国粮食产量分析[J].农业经济问题,2021年,增刊:132-140。[2]高铁梅,?计量经济分析方法与建模?[M].清华大学出版社2006年版。[3]于俊年,?经济计量学软件-Eviews的使用?[M].对外经济贸易出版社2006年版。[4]庞皓,?经济计量学?[M].科学出版社2007年版。附录1978-2021年我国粮食产量数据年份粮食产量年份粮食产量19781994197919951980199619813250219971982354501998198319991984200019852001198620021987200319883940820041989200519902006199120071992202119932021530821978-2021年我国粮食一阶差分后数据年份一阶差值年份一阶差值1978NA19941979273519951980-11561996198119971982294819981983327719991984200019852001198620021987200319882004198920051990200614021991-1095200719922021199313832021ARIMA(3,1,2)模型拟合值、实际值、残差值及残差图年份真实值拟合值残差值残差值图19822948|.|.*|1983|*.|.|19842003|.*.|1985|*.|.|1986|.*|.|1987|.|*.|1988|.*.|1989|.*.|1990|.|.*|1991-1095|.*|.|1992|.*|.|19931383|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论