




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
原文EfficiencyAndOperatingCharacteristicsOfCentrifugalAndReciprocatingCompressorsByRainerKurz,BernhardWinkelmann,andSaeidiVIokhatabReciprocatingcompressorsandcentrifugalcompressorshavedifferentoperatingcharacteristicsandusedifferenteificiencydefinitions.Thisarticleprovidesguidelinesforanequitablecomparison,resultinginauniversalefficiencydefinitionforbothtypesofmachines.Thecomparisonisbasedontherequirementsinwhichauserisultimatelyinterested.Further,theimpactofactualpipelineoperatingconditionsandtheimpactonefficiencyatdifferentloadlevelsisevaluated.Atfirstglance,calculatingtheefficiencyforanytypeofcompressionseemstobestraightforward:comparingtheworkrequiredofanidealcompressionprocesswiththeworkrequiredofanactualcompressionprocess.Thedifficultyiscorrectlydefiningappropriatesystemboundariesthatincludelossesassociatedwiththecompressionprocess.Unlesstheseboundariesareappropriatelydefined,comparisonsbetweencentrifugalandreciprocatingcompressorsbecomeflawed.Wealsoneedtoacknowledgethattheefficiencydefinitions,evenwhenevaluatedequitably,stilldon'tcompletelyansweroneoftheoperator'smainconcerns:Whatisthedriverpowerrequiredforthecompressionprocess?Toaccomplishthis,mechanicallossesinthecompressionsystemsneedtobediscussed.Trendsinefficiencyshouldalsobeconsideredovertime,suchasoff-designconditionsastheyareimposedbytypicalpipelineoperations,ortheimpactofoperatinghoursandassociateddegradationonthecompressors.Thecompressionequipmentusedforpipelinesinvolveseitherreciprocatingcompressorsorcentrifugalcompressors.Centrifugalcompressorsaredrivenbygasturbines,orbyelectricmotors.Thegasturbinesusedare,ingeneral,two-shaftenginesandtheelectricmotordrivesuseeithervariablespeedmotors,orvariablespeedgearboxes.Reciprocatingcompressorsareeitherlowspeedintegralunits,whichcombinethegasengineandthecompressorinonecrankcasing,orseparable"high-speed"units.Thelatterunitsoperateinthe750-1,200rpmrange(1,800rpmforsmallerunits)andaregenerallydrivenbyelectricmotors,orfour-strokegasengines.EfficiencyTodeterminetheisentropicefficiencyofanycompressionprocessbasedontotalenthalpies(h),totalpressures(p),temperatures(T)andentropies(s)atsuctionanddischargeofthecompressoraremeasured,andtheisentropicefficiencyr\Athenbecomes:_[h(p ,s)-h(p,T)]门= disch suet suct suct (Eq.1)s[h(p,T)-h(p ,T)](Eq.1)dischdisch suctsuctand,withmeasuringthesteadystatemassflowm,theabsorbedshaftpoweris:.p=—[h(p ,T )-h(p,T)](Eq.2)门 dischdisch suctsuct(Eq.2)mconsideringthemechanicalefficiencyr\A.Thetheoretical(isentropic)powerconsumption(whichisthelowestpossiblepowerconsumptionforanadiabaticsystem)followsfrom:(Eq.3)dischsuctP=m[h(p ,s)一h(p,T)](Eq.3)dischsucttheor dischsuct suctsuctTheflowintoandoutofacentrifugalcompressorcanbeconsideredas"steadystate."Heatexchangewiththeenvironmentisusuallynegligible.Systemboundariesfortheefficiencycalculationsareusuallythesuctionanddischargenozzles.Itneedstobeassuredthatthesystemboundariesenvelopeallinternalleakagepaths,inparticularrecirculationpathsfiAombalancepistonordivisionwallleakages.Themechanicalefficiencyr)A.,,describingthefrictionlossesinbearingsandseals,aswellaswindagelosses,istypicallybetween98and99%.Forreciprocatingcompressors,theoreticalgashorsepowerisalsogivenbyEq.3,giventhesuctionanddischargepressureareupstreamofthesuctionpulsationdampenersanddownstreamofthedischargepulsationdampeners.Reciprocatingcompressors,bytheirverynature,requiremanifoldsystemstocontrolpulsationsandprovideisolationfromneighboringunits(bothreciprocatingandcentrifugal),aswellasfrompipelineflowmetersandyardpipingandcanbeextensiveinnature.Thedesignofmanifoldsystemsforeitherslowspeedorhighspeedunitsusesacombinationofvolumes,pipinglengthsandpressuredropelementstocreatepulsation(acoustic)filters.Thesemanifoldsystems(filters)causeapressuredrop,andthusmustbeconsideredinefficiencycalculations.Potentially,additionalpressuredeductionsfromthesuctionpressurewouldhavetomadetoincludetheeffectsofresidualpulsations.Likecentrifugalcompressors,heattransferisusuallyneglected.Forintegralmachines,mechanicalefficiencyisgenerallytakenas95%.Forseparablemachinesa97%mechanicalefficiencyisoftenused.Thesenumbersseemtobesomewhatoptimistic,giventhefactthatanumberofsourcesstatethatreciprocatingenginesincurbetween8-15%mechanicallossesandreciprocatingcompressorsbetween6-12%(Ref1:Kurz,R.,K.Brun,2007).OperatingConditionsForasituationwhereacompressoroperatesinasystemwithpipeofthelengthLuupstreamandapipeofthelengthLddownstream,andfurtherwherethepressureatthebeginningoftheupstreampipepuandtheendofthedownstreampipepeareknownandconstant,wehaveasimplemodelofacompressorstationoperatinginapipelinesystem(Figure1).Figure1:Conceptualmodelofapipelinesegment(Ref.2:Kurz,R.,M.Lubomirsky.2006).Foragiven,constantflowcapacityQstdthepipelinewillthenimposeapressurepsatthesuctionandpdatthedischargesideofthecompressor.Foragivenpipeline,thehead(Hs)-flow(Q)relationshipatthecompressorstationcanbeapproximatedby(Eq.4)whereC3andC4areconstants(foragivenpipelinegeometry)describingthepressureateitherendsofthepipeline,andthefrictionlosses,respectively(Ref2:Kurz,R.,M.Lubomirsky,2006).Amongotherissues,thismeansthatforacompressorstationwithinapipelinesystem,theheadforarequiredflowisprescribedbythepipelinesystem(Figure2).Inparticular,thischaracteristicrequiresthecapabilityforthecompressorstoallowareductioninheadwithreducedflow,andviceversa,inaprescribedfashion.Thepipelinewillthereforenotrequireachangeinflowatconstanthead(orpressureratio).Figure2:StafionHead-FlowrelationshipbasedonEq.4.Intransientsituations(forexampleduringlinepacking),theoperatingconditionsfollowinitiallyaconstantpowerdistribution,i.e.theheadflowrelationshipfollows:八-H(Eq.5)P=m・一s(Eq.5)门sH叩•const1=^"p^•Qandwillasymptoticallyapproachthesteadystaterelationship(Ref3:Ohanian,S.,R.Kurz,2002).Basedontherequirementsabove,thecompressoroutputmustbecontrolledtomatchthesystemdemand.Thissystemdemandischaracterizedbyastrongrelationshipbetweensystemflowandsystemheadorpressureratio.Giventhelargevariationsinoperatingconditionsexperiencedbypipelinecompressors,animportantquestionishowtoadjustthecompressortothevaryingconditions,and,inparticular,howdoesthisinfluencetheefficiency.Centrinagalcompressorstendtohaveratherflatheadvs.flowcharacteristic.Thismeansthatchangesinpressureratiohaveasignificanteffectontheactualflowthroughthemachine(Ref4:Kurz,R.,2004).Foracentrifugalcompressoroperatingataconstantspeed,theheadorpressureratioisreducedwithincreasingflow.ControllingtheflowthroughthecompressorcanbeaccomplishedbyvaryingtheoperatingspeedofthecompressorThisisthepreferredmethodofcontrollingcentrifugalcompressors.Twoshaftgasturbinesandvariablespeedelectricmotorsallowforspeedvariationsoverawiderange(usuallyfrom40-50%to100%ofmaximumspeedormore).Itshouldbenoted,thatthecontrolledvalueisusuallynotspeed,butthespeedisindirectlytheresultofbalancingthepowergeneratedbythepowerturbine(whichiscontrolledbythefuelflowintothegasturbine)andtheabsorbedpowerofthecompressor.
Virtuallyanycentrifugalcompressorinstalledinthepast15yearsinpipelineserviceisdrivenbyavariablespeeddriver,usuallyatwo-shaftgasturbine.Olderinstallationsandinstallationsinotherthanpipelineservicesometimesusesingle-shaftgasturbines(whichallowaspeedvariationfromabout90-100%speed)andconstantspeedelectricmotors.Intheseinstallations,suctionthrottlingorvariableinletguidevanesareusedtoDrovidemeansofcontrol.Figure3:Typicalpipelineoperatingpointsplottedintoatypicalcentrifugalcompressorperformancemap.Theoperatingenvelopeofacentrifugalcompressorislimitedbythemaximumallowablespeed,theminimumflow(surgeflow),andthemaximumflow(chokeorstonewall)(Figure3).Anotherlimitingfactormaybetheavailabledriverpower.Onlytheminimumflowrequiresspecialattention,becauseitisdefinedbyanaerodynamicstabilitylimitofthecompressorCrossingthislimittolowerflowswillcauseaflowreversalinthecompressor,whichcandamagethecompressor.Modemcontrolsystemspreventthissituationbyautomaticallyopeningarecyclevalve.Forthisreason,virtuallyallmoderncompressorinstallationsusearecyclelinewithcontrolvalvethatallowstheincreaseoftheflowthroughthecompressorifitcomesnearthestabilitylimit.Thecontrolsystemsconstantlymonitortheoperatingpointofthecompressorinrelationtoitssurgeline,andautomaticallyopenorclosetherecyclevalveifnecessary.Formostapplications,theoperatingmodewithanopen,orpartiallyopenrecyclevalveisonlyusedforstart-upandshutdown,orforbriefperiodsduringupsetoperatingconditions.AssumingthepipelinecharacteristicderivedinEq.4,thecompressorimpellerswillbeselectedtooperateatornearitsbestefficiencyfortheentirerangeofheadandflowconditionsimposedbythepipeline.Thisispossiblewithaspeed(N)controlledcompressor,becausethebestefficiencypointsofacompressorareconnectedbyarelationshipthatrequiresapproximately(fanlawequation):2=C5=C2=C5=C6(Eq.6)Foroperatingpointsthatmeettheaboverelationship,theabsorbedgaspowerPgis(duetothefactthattheefficiencystaysapproximatelyconstant):(Eq.7)P=C-H-Q=匕-C-Q3=C-C-C-N3g7 5 C2 7 5 6 7(Eq.7)6Asitis,thispower-speedrelationshipallowsthepowerturbinetooperateat,orveryclosetoitsoptimumspeedfortheentirerange.Thetypicaloperatingscenariosinpipelinesthereforeallowthecompressorandthepowerturbinetooperateatitsbestefliciencyformostofthetime.Thegasproducerofthegasturbinewill,however,losesomethermalefficiencywhenoperatedinpartload.Figure3showsatypicalrealworldexample:Pipelineoperatingpointsfordifferentflowrequirementsareplottedintotheperformancemapofthespeedcontrolledcentrifugalcompressorusedinthecompressorstation.Reciprocatingcompressorswillautomaticallycomplywiththesystempressureratiodemands,aslongasnomechanicallimits(rodloadpower)areexceeded.Changesinsystemsuctionordischargepressurewillsimplycausethevalvestoopenearlierorlater.Theheadisloweredautomaticallybecausethevalvesseelowerpipelinepressuresonthedischargesideand/orhigherpipelinepressuresonthesuctionside.Therefore,withoutadditionalmeasures,theflowwouldstayroughlythesame—exceptfortheimpactofchangedvolumetricefficiencywhichwouldincrea.se,thusincreasingtheflowwithreducedpresstireratio.Thecontrolchallengeliesintheadjustmentoftheflowtothesystemdemands.Withoutadditionaladjustments,theflowthroughputofthecompressorchangesverylittlewithchangedpressureratio.Historically,pipelinesinstalledmanysmallcompressorsandadjustedflowratebychangingthenumberofmachinesactivated.Thiscapacityandloadcouldbefine-tunedbyspeedorbyanumberofsmalladjustments(loadsteps)madeinthecylinderclearanceofasingleunit.Ascompressorshavegrown,theburdenforcapacitycontrolhasshiftedtotheindividualcompressors.Loadcontrolisacriticalcomponenttocompressoroperation.Fromapipelineoperationperspective,variationinstationflowisrequiredtomeetpipelinedeliverycommitments,aswellasimplementcompanystrategiesforoptimaloperation(i.e.,linepacking,loadanticipation).Fromaunitperspective,loadcontrolinvolvesreducingunitflow(throughunloadersorspeed)tooperateascloseaspossibletothedesigntorquelimitwithoutoverloadingthecompressorordriverThecriticallimitsonanyloadmapcurvearerodloadlimitsandHP/torquelimitsforanygivenstationsuctionanddischargepressure.Gascontrolgenerallywillestablishtheunitswithinastationthatmustbeoperatedtoachievepipelineflowtargets.Localunitcontrolwillestablishloadsteporspeedrequirementstolimitrodloadsorachievetorquecontrol.Thecommonmethodsofchangingflowratearetochangespeed,changeclearance,orde-activateacylinder-end(holdthesuctionvalveopen).Anothermethodisaninfinite-stepunloader,whichdelayssuctionvalveclosuretoreducevolumetricefficiency.Further,partoftheflowcanberecycledorthesuctionpressurecanbethrottledthusreducingthemassflowwhilekeepingthevolumetricflowintothecompressorapproximatelyconstant.Controlstrategiesforcompressorsshouldallowautomation,andbeadjustedeasilyduringtheoperationofthecompressor.Inparticular,strategiesthatrequiredesignmodificationstothecompres.sor(forexample:re-wheelingofacentrifugalcompressor,changingcylinderbore,oraddingfixedclearancesforareciprocatingcompressor)arenotconsideredhere.Itshouldbenotedthatwithreciprocatingcompressors,akeycontrolrequirementistonotoverloadthedriverortoexceedmechanicallimits.OperationThetypicalsteadystatepipelineoperationwillyieldanefliciencybehaviorasoutlinedinFigure4.ThisfigureistheresultofevaluatingthecompressorefTiciencyalongapipelinesteadystateoperatingcharacteristic.Bothcompressorswouldbesizedtoachievetheirbestefficiencyat100%flow,whileallowingfor10%flowabovethedesignflow.Differentmechanicalefficiencieshavenotbeenconsideredforthiscomparison.Thereciprocatingcompressorefl'iciencyisderivedn-omvalveefficiencymeasurementsinRef5(Noall,M.,W.Couch,2003)withcompressionefficiencyandlossesduetopulsationattenuationdevicesadded.Theefficienciesareachievablewithlowspeedcompressors.Highspeedreciprocatingcompressorsmaybelowerinefficiency.Figure4:CompressorEfficiencyafdifferentflowratesbasedonoperationaiongasteadystatepipelinecharacteristic.Figure4showstheimpactoftheincreasedvalvelossesatlowerpressureratioandlowerflowforreciprocatingmachines,whiletheefficiencyofthecentrifugalcompressorstaysmoreorlessconstant.ConclusionsEfficiencydefinitionsandcomparisonbetweendifferenttypesofcompressorsrequirecloseattentiontothedefinitionoftheboundaryconditionsforwhichtheefficienciesaredefinedaswellastheoperatingscenarioinwhichtheyareemployed.Themechanicalefficiencyplaysanimportantrolewhenefficiencyvaluesareusedtocalculatepowerconsumption.Ifthesedefinitionsarenotconsidered,discussionsofrelativemeritsofdifferentsystemsbecomeinaccurateandmisleading.REFERENCESKurz.R..K.Brun.2007."EfTiciencyDefinitionandLoadManagementforReciprocatingandCentrifugalCompressors,"ASMEPaperGT2OO7-27O81.Kurz.R.,M.Lubomirsky,2006."AsymttietricSolutionforCompressorStationSpareCapacity."ASMt:Paper2006-90069.Ohanian.S..R.Kurz.2002,"SeriesorParallelArrangementinaTwo-UnitCompressorStation."Trans.ASMEJEngforGTandPower.V)l.124.Kurz.R..2004."ThePhysiesofCentrifugalCompressorPerformance."PipelineSimulationInterestGroup.PalmSprings.CA.Noall,M..W.Couch.2003,"PerformanceandEnduranceTestsofSixMainlineCompressorValvesinNaturalGasCompressionService."GasMachineryConference.SaltLakeCity.UT.第三篇:离心式和往复式压缩机的工作效率特性RainerKurz,BernhardWinkelmann,andSaeidMokhatab往复式压缩机和离心式压缩机具有不同的工作特性,而且关于效率的定义也不同。本文提供了一个公平的比较准则,得到了对于两种类型机器普遍适用的效率定义。这个比较基于用户最感兴趣的要求提出的。此外,对于管道的工作环境影响和在不同负载水平的影响给出了评估。乍一看,计算任何类型的压缩效率看似是很简单的:比较理想压缩过程和实际压缩过程的工作效率。难点在于正确定义适当的系统边界,包括与之相关的压缩过程的损失。除非这些边界是恰好定义的,否则离心式和往复式压缩机的比较就变得有缺陷了。我们也需要承认,效率的定义,甚至是在评估公平的情况下,仍不能完全回应操作员的主要关心问题:压缩过程所需的驱动力量是什么?要做到这一点,就需要讨论在压缩过程中的机械损失。随着时间的推移效率趋势也应被考虑,如非设计条件,它们是由专业的流水线规定,或者是受压缩机的工作时间和自身退化的影响。管道使用的压缩设备涉及到往复式和离心式压缩机。离心式压缩机用燃气轮机或者是电动马达来驱动。所用的燃气轮机,总的来说,是两轴发动机,电动马达使用的是变速马达或者变速齿轮箱。往复压缩机是低速整体单位或者是可分的“高速”单位,其中低速整体单位是燃气发动机和压缩机在一个曲柄套管内。后者单位的运行在750-1,200rpm范围内(1,800rpm是更小的单位)并且通常都是由电动马达或者四冲程燃气发动机来驱动。效率要确定任何压缩过程的等熵效率,就要基于测量的压缩机吸入和排出的总焓(h),总压力(p),温度(T)和熵(s),于是等熵效率门s变为:_[h(p,s)—h(p,T)]门= disch suct suct suct (Eq.1)(Eq.2)s[h(p,T)—h(p,T)]dischdisch suctsuct(Eq.1)(Eq.2)并且加上测量的稳态质量流m,吸收轴功率为:.p=—[h(p ,T)-h(p,T)]门 dischdisch suctsuctm考虑机械效率门m。理论(熵)功耗(这是绝热系统可能出现的最低功耗)如下:P=m[h(p,s)—h(p,T)] (E3)theor dischsuct suctsuct (q.。)流入和流出离心式压缩机的流量可以视为“稳态”。环境的热交换通常可以忽略。系统边界的效率计算通常是用吸入和排出的喷嘴。需要确定的是,系统边界要包含所有内部泄露途径,尤其是从平衡活塞式或分裂墙渗漏的循环路径。机械效率叩m,在描述轴承和密封件的摩擦损失以及风阻损失时可以达到98%和99%。
对于往复式压缩机,理论的气体马力也是由Eq.3给出的,鉴于吸力缓冲器上游和排力缓冲器下游的吸气和排气压力脉动。往复压缩机就其性质而言,从临近单位需要多方面的系统来控制脉动和提供隔离(包括往复式和离心式),以及可以自然存在的来自管线的管流量和面积管道。对于任何一个低速或高速单位的歧管系统设计,使用了卷相结合,管道长度和压力降元素来创造脉动(声波)滤波器。这些歧管系统(过滤器)引起压力下降,因此必须在效率计算时考虑到。潜在的,从吸气压力扣除的额外压力不得不包含进残余脉动的影响。就像离心压缩机一样,传热就经常被忽视。对于积分的机器,机械效率一般取为95%。对于可分机机械效率一般使用97%。这些数字似乎有些乐观,一系列数字显示,往复式发动机机械损失在8-15%之间,往复压缩机的在6-12%(参考1往复压缩机招致号码:库尔兹,R.,K.,光布伦,2007)。工作环境在这样的情况下,当压缩机在一个系统中运行时,管道长度Lu上游和Ld下游,以及管道pu上游的初始压力和管道pe下游的终止压力均被视为常量,在管道系统中我们有一个压缩机运行的简单模型(图1)。图1:管道段的概念模型(文献2:库尔兹.R,M.由罗穆斯基,2006年)。对于给定的,标准管线定量流动能力将在吸入阶段强加压力p,在压缩机放电区强加压力匕。对于给定的管线,压缩机站头部(H)流(。)关系可以近似表述为H=CTI1I—-近似表述为H=CTI1I—-厂二
J1-q+q•q2
up2J-1(Eq.4)其中C3和C4是常数(对于一个给定的管道几何)分别描述了管道两边的压力和摩擦损失(文献2:库尔兹.R,M.由罗穆斯基,2006年)。除去其他问题,这意味着对于带管道系统的压缩机站,头部所需流量扬程是由管道系统规定的(图2)。特别地,这一特点对于压缩机需要的能力允许头部减量,按照规定的方式反之亦然。管道因此将不需要改变头部的流量恒定(或压力比)。图2:建立在4式上的机头流量关系。在短暂的情况下(如包装其间),最初的操作条件遵循恒功率分布,如头部流量关系如下:八・HP=m・一s=const (Eq.5)门sH叩-const1=^"p•Q并将渐进地达到稳定的关系(文献3:奥海宁S.,R.库尔兹,2002年)
在上述要求的基础上,必须控制压缩机输出与系统要求匹配。该系统需求的特点是系统流程和系统头部或压力比的强烈关系。管线压缩机提供了在操作条件经验下的大量变化,一个重要问题就是如何使压缩机适应这样变化的条件,具体的说就是如何影响效率。离心压缩机具有相当大的平头部和流程特点。这意味着压力比的改变对机器的实际流程有重大的影响(文献4:库尔兹R.,20004年)。对于一个恒速运行的压缩机,头部或压力比随着流量的增加而减少。控制压缩机内的流程可以实现压缩机不同的运行速度。这是控制离心压缩机最便捷的方法。两轴燃气轮机和变速电机允许大范围的速度变化(通常是最大速度或更多的40%或50%到100%)。应当指出,被控制的值通常不是速度,但速度是间接平衡由涡轮产生的动力(受进入燃气轮机燃油流量控制)和压缩机的吸收功率。事实上,在过去15年安装的任何离心压缩机在管线服务方面是由调速器来驱使的,通常是两轴燃气轮机。年长的设施和服务设施在其他管线服务有时使用单轴燃气轮机(允许速度90%到100%的变化)和恒速电动机。在这些装置中,吸节流或可变进气导叶用来提供控制方法。图3:典型的管线运行点绘制成的典型离心压缩机性能图。离心压缩机的运行封套受最大允许速度限制,最小流量(涌)和最大流量(窒息或石墙)(图3)。另一个限制因素可能是可用的驱动电源。只有最小流量需要特别注意,因为它被定义为压缩机的一种气
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全保卫技师试题及答案
- 安全操作证试题及答案
- 商业视角下的数字孪生产品创新与迭代
- 思品课堂育人文:苏州XX小学的探索与启示
- 山东大学图书馆馆员激励机制优化研究:基于组织发展与个体需求的协同视角
- 对外汉语教学中疑问语气词吗、吧、呢的难点剖析与策略探究
- 2025年专升本艺术概论考试模拟卷:艺术审美心理在艺术表演中的影响与启示研究探讨研究探讨研究试题
- 如何打造高效、安全的办公系统平台
- 2025年小学教师资格考试《综合素质》冲刺阶段:实战试题库及答案
- 开展自我反思与改进的工作方案计划
- 化工设计知到智慧树章节测试课后答案2024年秋浙江大学
- 社会过程研究方法(简版)课件
- 替莫唑胺与恶性胶质瘤课件
- 腹腔镜器械清洗流程图
- 学校食堂餐厅紫外线灯消毒记录表
- 工会文体活动管理制度范文
- 第6章_射线与物质的相互作用
- 3D打印介绍PPT精选文档课件
- 钢结构吊装施工方案-
- 银发【2007】246号
- 【机械毕业设计全套含CAD图论文】麦田免耕施肥播种机设计
评论
0/150
提交评论