




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1.3导数的几何意义1.1.3导数的几何意义1复习回顾:导数的概念
定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量Δx时函数有相应的改变量Δy=f(x0+Δx)-f(x0).如果当Δx0时,Δy/Δx的极限存在,这个极限就叫做函数f(x)在点x0处的导数(或变化率)记作即:复习回顾:导数的概念定义:设函数y=f(x)2新人教版选修22第113节导数的几何意义课件3新人教版选修22第113节导数的几何意义课件4下面来看导数的几何意义:
βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy
如图,曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的任意一点,Q(x0+Δx,y0+Δy)为P邻近一点,PQ为C的割线,PM//x轴,QM//y轴,β为PQ的倾斜角.斜率!下面来看导数的几何意义:βy=f(x)PQMΔxΔyOxy5PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P6我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。割线趋近于确定的位置的直线定义为切线.曲线与直线相切,并不一定只有一个公共点。oxyy=f(x)割线切线PQT我们用曲线上某点处的切线近似代替这一点附近的曲线,这是微积分中重要的思想方法——以直代曲我们发现,当点Q沿着曲线无限接近点P即Δx→0时7oxyy=f(x)割线切线设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:这个概念:(1)①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数在x=x0处的导数.PQToxyy=f(x)割线切线设切线的倾斜角为α8例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.QPy=x2+1xy-111OjMDyDx因此,切线方程为y-2=2(x-1),即y=2x.求曲线在某点处的切线方程的基本步骤:先利用切线斜率的定义求出切线的斜率,然后利用点斜式求切线方程.例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方9新人教版选修22第113节导数的几何意义课件10
例3.如图表示人体血管中的药物浓度c=f(t)(单位:mg/ml)随时间t(单位:min)变化的函数图像,根据图像,估计t=0.2,0.4,0.6,0.8(min)时,血管中药物浓度的瞬时变化率,把数据用表格的形式列出。(精确到0.1)
11
血管中药物浓度的瞬时变化率,就是药物浓度从图象上看,它表示曲线在该点处的切线的斜率.函数f(t)在此时刻的导数,(数形结合,以直代曲)以简单对象刻画复杂的对象血管中药物浓度的瞬时变化率,就是药物12练习:如图已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.
yx-2-112-2-11234OP即点P处的切线的斜率等于4.
(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.练习:如图已知曲线13(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0))的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即归纳:求切线方程的步骤无限逼近的极限思想是建立导数概念、用导数定义求函数的导数的基本思想,丢掉极限思想就无法理解导数概念。(1)求出函数在点x0处的变化率,得到14课堂练习课堂练习15新人教版选修22第113节导数的几何意义课件161.1.3导数的几何意义1.1.3导数的几何意义17复习回顾:导数的概念
定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量Δx时函数有相应的改变量Δy=f(x0+Δx)-f(x0).如果当Δx0时,Δy/Δx的极限存在,这个极限就叫做函数f(x)在点x0处的导数(或变化率)记作即:复习回顾:导数的概念定义:设函数y=f(x)18新人教版选修22第113节导数的几何意义课件19新人教版选修22第113节导数的几何意义课件20下面来看导数的几何意义:
βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy
如图,曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的任意一点,Q(x0+Δx,y0+Δy)为P邻近一点,PQ为C的割线,PM//x轴,QM//y轴,β为PQ的倾斜角.斜率!下面来看导数的几何意义:βy=f(x)PQMΔxΔyOxy21PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P22我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。割线趋近于确定的位置的直线定义为切线.曲线与直线相切,并不一定只有一个公共点。oxyy=f(x)割线切线PQT我们用曲线上某点处的切线近似代替这一点附近的曲线,这是微积分中重要的思想方法——以直代曲我们发现,当点Q沿着曲线无限接近点P即Δx→0时23oxyy=f(x)割线切线设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:这个概念:(1)①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数在x=x0处的导数.PQToxyy=f(x)割线切线设切线的倾斜角为α24例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.QPy=x2+1xy-111OjMDyDx因此,切线方程为y-2=2(x-1),即y=2x.求曲线在某点处的切线方程的基本步骤:先利用切线斜率的定义求出切线的斜率,然后利用点斜式求切线方程.例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方25新人教版选修22第113节导数的几何意义课件26
例3.如图表示人体血管中的药物浓度c=f(t)(单位:mg/ml)随时间t(单位:min)变化的函数图像,根据图像,估计t=0.2,0.4,0.6,0.8(min)时,血管中药物浓度的瞬时变化率,把数据用表格的形式列出。(精确到0.1)
27
血管中药物浓度的瞬时变化率,就是药物浓度从图象上看,它表示曲线在该点处的切线的斜率.函数f(t)在此时刻的导数,(数形结合,以直代曲)以简单对象刻画复杂的对象血管中药物浓度的瞬时变化率,就是药物28练习:如图已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.
yx-2-112-2-11234OP即点P处的切线的斜率等于4.
(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.练习:如图已知曲线29(1)求出函数在点x0处的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能家居产品体验店设备维护保养合同
- 影视拍摄现场群众演员意外险及安全保障协议
- 电池制造企业安全生产责任与理赔补充协议
- 全新业态商业连锁品牌加盟合作协议
- 预应力混凝土桥梁工程施工安全防护及检测协议
- 上市公司股权转让款结算及合规审查协议
- 专业潜水旅游项目定制与设备租赁合同
- 模具验收与生产效率提升协议
- 婚前股权投资古董收藏品分割与权益分配协议
- DB42-T 2014-2023 导轨式胶轮系统交通工程技术规程
- 越出站界调车RAILWAY课件
- 河北武安招聘警务辅助人员笔试真题2024
- 2025年高级插花花艺师(三级)理论考试题(附答案)
- 脊柱损伤搬运操作
- 医院医用耗材培训
- 布鲁氏菌病培训课件
- 2025年古董拍卖收藏品买卖协议书
- 【托比网】2024中国工业品数字化发展报告
- 砌石截水墙施工方案
- 海岸工程学设计计算书
- 大学美育知到智慧树章节测试课后答案2024年秋长春工业大学
评论
0/150
提交评论