




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§3-10晶格的状态方程和热膨胀简谐近似:
(1)在简谐近似的情况下,晶格原子振动可描述为3N个线性独立的谐振子的叠加,各振子间不发生作用,也不交换能量;一、晶体的热膨胀和非简谐效应
(2)晶体中某种声子一旦产生,其数目就一直保持不变,既不能把能量传递给其他声子,也不能使自己处于热平衡状态。用简谐近似理论不能解释晶体的热膨胀和热传导现象。晶体的非简谐效应:微扰项声子间有相互作用能量交换系统达到热平衡
两个声子通过非简谐项的作用,而产生第三个声子。这可以看成是两个声子的相互碰撞,最后产生第三个声子。微扰项声子间的相互作用遵循能量守恒和准动量守恒碰撞前后系统准动量不变,对热流无影响。---正常过程(N过程);(1)---反常过程(U过程)。(2)二、热膨胀
热膨胀:在不施加压力的情况下,晶体体积随温度变化的现象称为热膨胀。
假设有两个原子,一个在原点固定不动,另一个在平衡位置R0附近作振动,离开平衡位置的位移用表示,势能在平衡位置附近展开:0R0R0(1)简谐近似RU(r)R0两原子间距不变,无热膨胀现象(2)非简谐效应两原子间距增大,有热膨胀现象。由玻尔兹曼统计,原子离开平衡位置的平均位移(c、g均为正常数。)(1)简谐近似:是的奇函数在简谐近似下无热膨胀现象。(2)非简谐效应:在非简谐效应下,有热膨胀现象。推导略线膨胀系数当势能只保留到3次方项时,线膨胀系数与温度无关。若保留更高次项,则线膨胀系数与温度有关。显然,在简谐近似下,g=0,=0。三、晶体的状态方程和热膨胀
由热力学知,压强P、熵S、定容比热CV和自由能F之间的关系为:自由能F(T,V)是最基本的物理量,求出F(T,V),其他热力学量或性质就可以由热力学关系导出。晶格自由能F1=U(V)F2由统计物理知道:Z是晶格振动的配分函数。频率为i的格波,配分函数为:由晶格振动决定T=0时晶格的结合能若能求出晶格振动的配分函数,即可求得热振动自由能。各谐子相互独立,忽略晶格之间的相互作用能,总配分函数为:
由于非线性振动,格波频率i也是宏观量V的函数,所以NeutralclusteranionclusterDopantCsIhC5VCsIhC5VCSiGeSn0.000.951.230.590.000.560.410.000.440.000.060.140.000.351.090.530.001.080.350.000.800.000.060.37StructuralandelectronicpropertiesoftheneutralandtheanionclustersonIn12X(X=C,Si,Ge,Sn)ThegeometricandelectroniccharactersofIn12X(X=C,Si,Ge,Sn)clustersinitsneutralandanionicchargestateshavebeeninvestigatedusingthedensityfunctionalcalculationswiththegeneralizedgradientapproximation.ThegroundstateofIn12X(X=C,Sn)andtheanionclustershavealowsymmetryCsstructureinsteadofanicosahedron.However,theneutralandanionclustersontheSiandGeatomdopedfavoranicosahedralstructure.FortheneutralIn12X(X=C,Si,Ge,Sn)clusters,ourcalculationdemonstratethattheenergygapsbetweenthehighestoccupiedmolecularorbitalandthelowestunoccupiedmolecularorbitalare0.6ev,1.16eV,1.15eV,0.88eVrespectively,andthemagneticmomentsarezero.However,theenergygapsforitsanionclusterare<0.3eV.Theseresultscanbeexplainedbyelectronicshellclosingof2pshell(40e)forneutralclusters,andindicatethatInatomsinclustersaretrivalent.I.INTRODUCTIONSincethediscovery1andmacroscopicproduction2offullerenes,therehavebeenextensiveintereststosearchforothersimilarstableclusters.Thesestableclustersnamed“magic”clusterscouldactascandidatesfornovelcluster-assembledmaterials.Thesphericaljelliummodelpredictsthattheclusterswith2,8,20,40,...valenceelectronshavehigherstabilityduetotheclosureofelectronicshells.3,4Forexample,theAl13having39valenceelectronsbydopingasinglemonovalentatomorbysubstitutinganAlwithatetravalentatomhas40valenceelectronsandcouldgainelectronicstabilitybyclosingthe1s21p61d102s21f142p6shell,asystematicstudyofbinaryaluminum(Al)clustershasbeenperformedbothexperimentallyandtheoretically5-11recently.DopingasingleC,Si,Ge,Sn,orPbatomintoanAl12cluster,thebinaryneutralclusterscouldgaintheelectronicstabilitywithperfecticosahedrastructureand40valenceelectronsclosingtheelectronicshell.Atthesametime,thetheoreticalstudiesfoundaddingorremovingelectronsfromtheneutralclustermightalteritsstructuralandelectronicproperties8,11.Thoughthealuminum(Al)andindium(In)atombelongtothesamegroupintheperiodictableandtheyhavetwos-valenceelectronsandonep-valenceelectron,thereareonlyafewstudiesconcerningindiumclusters.Intheirclusters,theelectronicfeatureischaracterizedonlybyonepelectroninasmallclusterbecauseanenergygapexistsbetweenthesandpbands.Astheclustersizeincreases,thesandpbandshybridizationandthecomposedatomsarecharacterizedastrivalentatoms.Foraluminumclusters,ithasbeenrevealedthatthes/phybridizationoccursaroundn~5bymeasuringtheirionizationpotential(IPs)[12,13].However,forindiumclusters,ithasbeenreportedtheInatomsaremonovalentupton~15bytheirIPsandphotoelectronspectroscopy[14].AtsushiNakajimaetal[15]foundIPsofIn7NaandIn13NaclusterswerehigherthanthoseofIn7andIn13,andtheIPincrementscouldbeexplainedbyelectronicshellclosingofthe1p(8e)and2pshell(40e),whereInatomsintheclustersweremonovalentandtrivalentrespectively.Meanwhile,theIn12Na3-wasfoundbestablegeometricallyorelectronically.Itsstabilitywasexplainedbytheelectronicshellmodelcorrespondingtothe2pshellclosing(40e),whenindiumatomsweretrivalent.ButnoelectronicclosingshellstructurewasobservedinpureInnclustersaroundn=13.TheythoughttheNaatomadditioninducess/phybridizationintheInnclusters.Howeverrecently,MinoruAkutsuetal16studiedtheelectronicpropertiesofSiandGeatomsdopedInclusters,InnSimandInnGem,byphotoionizationspectroscopyoftheneutralsandphotoelectronspectroscopyoftheanions.Theyfoundthereactivityoftheclustershaslocalminimaatn=10and12forInnSiandatn=9,10,and12forInnGeindicatingthattheIn10Si(In10Ge)andIn12Si(In12Ge)werestableelectronicallyorgeometricallyascomparedtoothersizeclusters.AndthechangingsizefrommonovalenttotrivalentforInnclustersdidnotshowobviousevidence,sotheoreticalcalculationstillwasneeded.Toourbestknowledge,thereisnostudyreportedonthegeometricalandelectronicpropertiesofthetetravalentatomdopingIn12clustersbyfar.Therefore,weperformedthedensityfunctionaltheory(DFT)calculationstoexplorethestructuralandtheelectronicpropertiesofIn12XandIn12X-(X=C,Si,Ge,Sn)clusters.II.COMPUTATIONALDETAILSAllthecalculationshavebeenperformedbasingupontheall-electrondensityfunctiontheory(DFT)17withthegeneralizedgradientapproximation(GGA)
(Ref.18)usingtheDMol3package19.TheBecke-Lee-Yang-Parr(BLYP)correlationexchangefunctionisadoptedwithDNPbasisset.BLYPfunctionisthecombinationoftheexchangefunctionexploitedbyBecke20andthecorrelationfunctionexploitedbyLee,Yang,andParr21.DNPbasisfunctions,comparabletoGaussian6-31G**sets,arethedoublenumericalatomicorbitalaugumentedbypolarizationfunctions:i.e.,functionswithangularmomentumonehigherthanthatofthehighestoccupiedorbitalinthefreeatom.TheelectronicstructureisobtainedbysolvingtheKohn-Sham(KS)equations22self-consistentlyusingthespinunrestrictedscheme.Self-consistentfieldproceduresweredonewithaconvergencecriterionof10−6a.u.ontheenergyandelectrondensity.GeometryoptimizationswereperformedusingtheBroyden-Fletcher-Goldfarb-Shanno(BFGS)algorithm23withaconvergencecriterionof10-3.onthedisplacementand10-5.ontheenergy.III.RESULTSANDDISCUSSIONSOneofthemostimportantthingsinstudyingclustersistodetermineitsequilibriumgeometry.FortheneutralandanionIn12X(X=C,Si,Ge,Sn)clusters,threepossiblegeometricconfigurationswithIh,C5v,Cssymmetryshowninfig.1areconsidered.ThethreeconfigurationsarethefavorablegeometriesoftheneutralandthechargedAl12X(X=C,Si,Ge,Sn,Pb)clusters.Theicosahedronisthetetravalentatomsittingatthecenter,whiletheC5vstructureisthetetravalentatomadsorbedonthevertex.Intable.1,wetabulatedtherelativevalueofthecalculatedbindingenergiesforthestructuresasshowninFig.1intheneutralandanionstates.ForIn12X(X=C,Sn)anditsanions,wefoundtheCsgeometryisground-statestructures,whiletheicosahedrongeometryforIn12Snanditsanionisnearlyenergeticallydegenerate(ΔE=0.06eV).ThestructurewithIhsymmetrywaslowest-energystructureofAl12Snchargedcluster8,10.Meanwhile,ourcalculationshowsthattheicosahedraconfigurationisthegroundstatesofIn12X(X=Si,Ge)anditsanionclusters.ThoughthedifferenceofthebindingenergybetweentheIhandCsstructurefortheIn12Snanditsanionclusterisverylitter,theCsgeometryhasthehigherbindingenergy(0.35eV~0.60eV)fortheSiandGeatomdopingIn12clusterseitherintheneutralorintheanionsthantheIhgeometry.TheaverageIn-SnandIn-InbondlengthsintheCsstructureforIn12Snare3.507Åand3.295ÅÅÅforIn12Sn-respectively.WhiletheaverageIn-CandIn-InbondlengthsintheCsstructureforIn12Care2.464Åand3.315ÅÅÅforIn12C-.Fortheseclusters,therearetwelveX(Si,Ge,Sn)-InbondsintheIhstructures,whiletheCsstructureshaveonlyfiveX-Inbonds.ThesingleSiandGeatomssitatthecenteroftheicosahedron.IntheseclusterswithIhÅÅforIn12SiandIn12ÅÅÅÅforIn12SiandIn12ÅÅforitsanion.FromtheSitoGe,thesizeofclustersisincreasingfortheIn12SiandIn12Geclusters,whichmayattributetothesizeofatomdopedsittingatthecenteroftheclusters,andsuggestsalsothebondingstrengthisweakerandweaker.Andthesizeoftheclustersforneutralclusterissmallerthanitsanion,whichindicatesthenetchargehasanobviouseffectonthestructureofSiandGedopingIn12clusters.InFig.2,Weshowthedensityofstates(DOS)ofthegroundstatesstructures.Thedensityofstatesiscalculatedbybroadeningthebandenergyofeachorbitalwiththeline-shapeLorentzianfunction.TheDOSforthegroundstatesofneutralclustersandtheiranionclustersareshownforadirectcomparison.Fromtheresults,wecouldseethatthegroundstatesstructurewiththesamesymmetryhadthesimilarstatesdensity(DOS).Forexample,theIn12SiandIn12GeclusterswithIhsymmetry,thelocationsandwidthsoftheirpeaksarealmostsame.FortheIn12CandIn12SnwiththesameCssymmetry,theirDOSarealmostsimilar,exceptthatthepeakwidthoftheIn12CislargerthantheclusterdopedSn,whichmayattributetothelocationoftheatomsdopedinPeriodicTable.AsonemovedowntothePeriodicTable,theelementbecomesincreasinglymoremetallicandlesselectronegative,andthesizeislargemoreandmore.ComparingtheDOSoftheanionclusterswiththeirneutralclusters’,wecouldseetheenergylevelsofelectroncouldbealteredbyaddinganelectron.Forexample,thefirsthighpeakfromtheleft,itislocalizedataround-3.8eVintheneutralstateforIn12SiandIn12GehavingthesameIhstructure.However,itisshiftedtoaround-4.4eVintheanionclusters.Takingawayanelectronincreasestheenergylevelofthevalenceelectron.XiLietal10hasputforwardthattheelectronegativityandthesizeofatomsbetwoimportantfactorsinthestructureevolutionfortheAl12X-speciesfromX=CtoPb.TheythoughtthattheAl12C-favoredtheCsstructurebecauseofthehighelectronegativity,andtheCsstructurewasthegroundstateofAl12Snforitslargesize.Inourcomputation,thegroundstatesofIn12CandIn12SnfavoringCsstructuresatisfyapparentlythereason.Thetotalelectrondensityoftheneutralclustersisshowninfig.3.WecouldseetheelectrondistributionofCinIn12CislitterthanotherIndiumcluster,whilethedifferenceexistshardlyinIn12Sn.InthePeriodicTable,theSnantInatomisproximateandthustheirelectronegativityaresamenearly.ButtheelectronegativityofCatomishigherthanthem,whichresultsinthedifferenceofthetotalelectrondensity.Infig.3,weshowalsothetotalelectrondensityoftheneutralIn12SiandIn12GeclusterswithsameIhstructure.TheelectrondistributionofInatomsinIn12SiandIn12Geclustersissameduetotheirhighsymmetry,WealsocarriedouttheHOMO-LUMObandgap,andfoundtheneutralclusterduetotheclosedelectronicshellpredictedbythejelliummodelhadalargerbandgapthantheiranionclusters.Theyare0.6,1.16,1.15,0.88eVforC,Si,Ge,Sndopedclusters,respectively.Fromtheseresults,wecouldseethestructuraleffectsonthebandgap.ThestablestructuresforIn12SiandIn12Gearetheicosahedron,andtheirbandgapsarearound1.15eV.However,thebandgapoftheCsstructuresthatarethegroundstatesofIn12CandIn12Sn,aresmallerthantheclusterswithIhstructure,whichindicatestheIhstructurewithhighsymmetrywillbekineticallymorestablethantheCsstructure.Comparingtheneutralclusters,thebandgapoftheiranionisallsmaller(<0.3eV).Sotheneutralclustersareverystablekinetically,andconsistentwithcompletelythejelliummodelfor40electrons.AndtheHOMO-LUMOgapsoftheneutralIn12X(X=Si,Ge)havingclosedelectronicstructureswereabout0.8eVreportedbyMinoruAkutsu20.Forhavingclosedelectronicstructure,wealsoobtainfromthespinsthatarezeroforallneutralclusters.However,thespinoftheIn12clusteris2,whichindicateitstwoelectrons(2p2)areunpaired.DuetothespinoftheneutralclustersofIn12X(X=C,Si,Ge,Sn),theyshouldhavetheclosed1S21p61d102S21f142P6electronicshell.SowesuggestthattheIndiumatombetrivalentintheIn12X,whichisconsistentwiththeresultsobtained
byAtsushiNakajimaetal23.ConclusionsWehaveperformedadensityfunctionalcalculationsonthestructuresandelectronicpropertiesofIn12X(X=C,Si,Ge,Sn)anditsanionclusterswiththegeneralizedgradientapproximation.TheCsstructurehasahighestbindingenergyfortheIn12X(X=C,Sn)andtheiranionclustersinsteadofanicosahedron.However,thehighestbindingenergystructuresaretheicosahedronfortheIn12X(X=Si,Ge)andtheiranionclusters.Foralltheneutralandanionclusters,theC5vstructuresoptimizedfromanicosahedronwithavertexcappedbyatetravalentatomhavethelowestbindingenergy.Thedifferenceofthebindingenergyisonly0.06eVbetweentheIhstructureandtheCsstructureforIn12Snanditsanion.FromtheDosoftheneutralandtheanionclusters,theadditionalchargeandthestructureaffecttheelectronicpropertiesoftheseclusters.Duetotheclosedelectronicshellfortheneutralcluster,thebandgapsbetweenthehighestoccupiedmolecularorbitalandthelowestunoccupiedmolecularorbitalare0.6ev,1.16eV,1.15eV,0.88eVfortheIn12X(X=C,Si,Ge,Sn)respectively.However,thebandgapsfortheanionclusterare<0.3eV.Moreover,wefindthespinsoftheneutralclustersarezero,whichfavorsmuchmorethe2pshellclosing.TheresultofthespinsandthebandgapsshowstheIndiumatominneutralclustersistrivalent.Fig.1TheschematicfiguresforthestateconsideredofIn12X(X=C,Si,Ge,Sn)anditsanionclusters.ThetetravalentatomsitsatthecenterofIhstructure,whiletheC5vstructuresarethetetravalentatomadsorbedonthevertex.ThetetravalentatomontheoutsideofIn12clustersformsCsstructure.Table1.ThecalculatedbindingenergiesineVforIn12X(X=C,Si,Ge,Sn)andtheiranionclusters.Fig.2ThedensityofstatesofthegroundstructuresforIn12XandIn12X-(X=C,Sn,Si,Ge)clusters.The(a)isfortheneutralclusters;the(b)isforthenegativelychargedclusters.ThedensityiscalculatedbybroadendingthebandenergyoftheoccupiedorbitalandtheunoccupiedorbitalseparatelywiththeLorentzianfunction.(a)(b)Fig.3theelectrontotaldensityof(a)theneutralIn12CandIn12SnclusterswithsameCsstructure,(b)theelectrontotaldensityoftheneutralIn12SiandIn12GeclusterswithsameIhstructure.TheatomsdopedarelocatedattheleftsideoftheCsstructures.TheSiandGeatomsarelocatedthecenterofthecage.ReferenceH.W.Kroto,J.R.Heath,S.C.O’Brien,R.F.Curl,andR.E,Smalley,Nature(London)318,162(1985).W.Kratschmer,L.D.Lamb,K.Fostiropoulos,andD.R.Huffman,Nature(London)347,354(1990).3.W.D.Knight,K.Clemenger,W.A.deHeer,W.A.Saunders,M.Y.Chou,andM.L.Cohen,Phys.Rev.Lett.52,2141(1984).W.A.deHeer,Rev.Mod.Phys.65,611(1993).,L.,Phys.Rev.B2002,65,153404.H.Kawamata,;Y.Negishi,;A.Nakajima,;,Chem.Phys.Lett.2001,337,255.D.E.Bergeron,A.W.Castleman,N.,S.N.Kahanna,Chem.Phys.Lett.2005,415,230.G.ChenandY.Kawazoe,J.Chem.Phys.2007,126,014703.K.H.YoungandJ.Jaehoon,J.Chem.Phys.2004,121(17),8500.X.Li,andL.S.Wang,Phys.Rev.B65,153404(2002).S.F.LiandX.G.Gong,Phys.Rev.B70,075404(2004).12.K.E.Schriver,,E.C.Honea,R.L.Whetten,.64,1990,2539.13.J.L.Persson,,H.P.Cheng,R.S.Berry,Chem.Phys.Lett.186,1991,215.14.M.Gausa,G.GantefÖr,H.O.Lutz,K.H.Meiwes-Broer,Int.J.Massspectrum.IonProcesses,102,227,1990.15.N.Atsushi,H.Kuniyoshi,S.Tsuneyoshi,N.Takashi,T.Tetsuya,etal,J.Phys.Chem.1993,97,86-90.16.A.Minoru,K.Kiichirou,A.Junko,M.Ken,M.Masaaki,andN.Atsushi,J.Phys.Chem.A2007,111,573-577.17.,D.Sánch
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红岩碰撞测试题及答案
- 注册土木工程师考试课后习题试题及答案
- 英语三年级上试卷及答案
- 清晰解读建筑施工安全责任试题及答案
- 电热淋浴器试题及答案
- 新能源汽车的智能制造技术现状与前景试题及答案
- 大学化学考试实际应用调查试题及答案
- 一年级下册的试卷及答案
- 立足实践2025年商务英语考试试题及答案
- 探索商务案例分析的试题及答案
- 常见病的健康管理学习通期末考试答案2023年
- 第三单元(知识清单)- 高二语文选择性必修下册同步备课系列(统编版)
- 中医诊所卫生技术人员名录表
- 室内设计人机工程学讲义
- GB/T 35513.2-2017塑料聚碳酸酯(PC)模塑和挤出材料第2部分:试样制备和性能测试
- T-CEEAS 004-2021 企业合规师职业技能评价标准
- 林教头风雪山神庙【区一等奖】-完整版课件
- 儿童生长发育专项能力提升项目-初级结业考试卷
- 天津市新版就业、劳动合同登记名册
- 改性环氧树脂薄层铺装方案
- 产品追溯及模拟召回演练计划
评论
0/150
提交评论