




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.3等腰三角形13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定13.3等腰三角形13.3.2等边三角形(2课时)第1课教学目标1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.教学目标1.掌握等边三角形的定义.重点难点重点等边三角形的性质和判定.难点等边三角形的性质的应用.重点难点重点教学设计一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?二、自主探究1.等边三角形的定义底边和腰相等的等腰三角形叫做等边三角形.2.思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形?边:三条边都相等.角:三个角都相等,并且每一个角都等于60°.教学设计一、问题引入教学设计3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA吗?为什么?你从中能得到什么结论?三个角都相等的三角形是等边三角形.4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是等边三角形;(2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论还成立吗?(3)由上你可以得到什么结论?有一个角是60°的等腰三角形是等边三角形.教学设计3.在△ABC中,∠A=∠B=∠C,你能得到AB=B教学设计三、应用举例1.教材例4.例4如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.教学设计三、应用举例证明:∵△ABC是等边三角形,∴∠A=∠教学设计2.归纳:在判定三角形是等边三角形时:(1)若三角形是一般三角形,只要找三个角相等或三条边相等;(2)若三角形是等腰三角形,一般是找一个角等于60°.教学设计2.归纳:在判定三角形是等边三角形时:四、巩固练习教材第80页练习第1,2题.补充题:1.如图,已知等边△ABC,点D,E,F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形.2.如图,已知等边△ABC,点D是AC的中点,且CE=CD,DF⊥BE.求证:BF=EF.教学设计第2题图
第1题图
四、巩固练习教学设计第2题图第1题图教师提出要求,补充题1,2可以让学生板书过程.五、总结提高小结:通过本节课的学习,你了解到了等边三角形有哪些特点?怎样判定一个三角形是等边三角形?布置作业:教材习题13.3第12,14题.教学设计教师提出要求,补充题1,2可以让学生板书过程.教学设计教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能得到什么结论?类似地,你又能得到哪些等边三角形的判定方法?让学生先自主探索再合作交流,小组内、小组间充分讨论后概括所得结论.这既巩固应用等腰三角形的知识,又类比探索等边三角形性质定理和判定定理的方法,并使学生加深对等腰三角形与等边三角形的联系与区别的理解.教学反思教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教学目标1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.教学目标1.完全平方公式的推导及其应用.重点难点重点完全平方公式的推导过程、结构特点、几何解释,灵活应用.难点理解完全平方公式的结构特征,并能灵活应用公式进行计算.重点难点重点教学设计一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方.你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教学设计一、复习引入教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构特征.归纳:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍.这两个公式叫做(乘法的)完全平方公式.教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因.还可以引导学生将(a-b)2的结果用(a+b)2来解释:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构教学设计教学设计2.教材例4:运用完全平方公式计算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性.教学设计2.教材例4:运用完全平方公式计算:教学设计四、再探新知1.现有下图所示三种规格的卡片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:教学设计四、再探新知教学设计2.你能根据下图说明(a-b)2=a2-2ab+b2吗?第1小题由小组合作共同完成拼图游戏,比一比哪个小组快?第2小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.教学设计2.你能根据下图说明(a-b)2=a2-2ab+b2吗?第1六、巩固拓展教材例5:运用乘法公式计算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;教学设计六、巩固拓展教学设计(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.教学设计(2)(a+b+c)2教学设计讲解此例之前可先让学生自学教材第111页的“添括号法则”并完成教材第111页练习第1题.然后给出例5题目,让学生思考选择哪个公式.第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a,b对照,其中-2y+3=-(2y-3),故应运用平方差公式.第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式.在解此例的过程中,应注意边辩析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点.教学设计讲解此例之前可先让学生自学教材第111页的“添括号法则”并完七、课堂小结谈一谈:你对完全平方公式有了哪些认识?它与平方差公式有什么区别和联系?作业:教材第112页习题14.2第2题,第3题的(1)(3)(4),第4题.教学设计七、课堂小结教学设计在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,而不知道将几个式子联系起来看;有些学生则观察入微,表现出了较强的观察力.教师要抓住这个契机,适当对学生进行学法指导.对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提.教学反思在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教学目标1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.教学目标1.完全平方公式的推导及其应用.重点难点重点完全平方公式的推导过程、结构特点、几何解释,灵活应用.难点理解完全平方公式的结构特征,并能灵活应用公式进行计算.重点难点重点教学设计一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方.你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教学设计一、复习引入教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构特征.归纳:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍.这两个公式叫做(乘法的)完全平方公式.教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因.还可以引导学生将(a-b)2的结果用(a+b)2来解释:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构教学设计教学设计2.教材例4:运用完全平方公式计算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性.教学设计2.教材例4:运用完全平方公式计算:教学设计四、再探新知1.现有下图所示三种规格的卡片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:教学设计四、再探新知教学设计2.你能根据下图说明(a-b)2=a2-2ab+b2吗?第1小题由小组合作共同完成拼图游戏,比一比哪个小组快?第2小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.教学设计2.你能根据下图说明(a-b)2=a2-2ab+b2吗?第1六、巩固拓展教材例5:运用乘法公式计算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;教学设计六、巩固拓展教学设计(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.教学设计(2)(a+b+c)2教学设计讲解此例之前可先让学生自学教材第111页的“添括号法则”并完成教材第111页练习第1题.然后给出例5题目,让学生思考选择哪个公式.第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a,b对照,其中-2y+3=-(2y-3),故应运用平方差公式.第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式.在解此例的过程中,应注意边辩析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点.教学设计讲解此例之前可先让学生自学教材第111页的“添括号法则”并完七、课堂小结谈一谈:你对完全平方公式有了哪些认识?它与平方差公式有什么区别和联系?作业:教材第112页习题14.2第2题,第3题的(1)(3)(4),第4题.教学设计七、课堂小结教学设计在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,而不知道将几个式子联系起来看;有些学生则观察入微,表现出了较强的观察力.教师要抓住这个契机,适当对学生进行学法指导.对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提.教学反思在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学13.3等腰三角形13.3.2等边三角形(2课时)第1课时等边三角形的性质和判定13.3等腰三角形13.3.2等边三角形(2课时)第1课教学目标1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.教学目标1.掌握等边三角形的定义.重点难点重点等边三角形的性质和判定.难点等边三角形的性质的应用.重点难点重点教学设计一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?二、自主探究1.等边三角形的定义底边和腰相等的等腰三角形叫做等边三角形.2.思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形?边:三条边都相等.角:三个角都相等,并且每一个角都等于60°.教学设计一、问题引入教学设计3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA吗?为什么?你从中能得到什么结论?三个角都相等的三角形是等边三角形.4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是等边三角形;(2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论还成立吗?(3)由上你可以得到什么结论?有一个角是60°的等腰三角形是等边三角形.教学设计3.在△ABC中,∠A=∠B=∠C,你能得到AB=B教学设计三、应用举例1.教材例4.例4如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.教学设计三、应用举例证明:∵△ABC是等边三角形,∴∠A=∠教学设计2.归纳:在判定三角形是等边三角形时:(1)若三角形是一般三角形,只要找三个角相等或三条边相等;(2)若三角形是等腰三角形,一般是找一个角等于60°.教学设计2.归纳:在判定三角形是等边三角形时:四、巩固练习教材第80页练习第1,2题.补充题:1.如图,已知等边△ABC,点D,E,F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形.2.如图,已知等边△ABC,点D是AC的中点,且CE=CD,DF⊥BE.求证:BF=EF.教学设计第2题图
第1题图
四、巩固练习教学设计第2题图第1题图教师提出要求,补充题1,2可以让学生板书过程.五、总结提高小结:通过本节课的学习,你了解到了等边三角形有哪些特点?怎样判定一个三角形是等边三角形?布置作业:教材习题13.3第12,14题.教学设计教师提出要求,补充题1,2可以让学生板书过程.教学设计教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能得到什么结论?类似地,你又能得到哪些等边三角形的判定方法?让学生先自主探索再合作交流,小组内、小组间充分讨论后概括所得结论.这既巩固应用等腰三角形的知识,又类比探索等边三角形性质定理和判定定理的方法,并使学生加深对等腰三角形与等边三角形的联系与区别的理解.教学反思教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教学目标1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.教学目标1.完全平方公式的推导及其应用.重点难点重点完全平方公式的推导过程、结构特点、几何解释,灵活应用.难点理解完全平方公式的结构特征,并能灵活应用公式进行计算.重点难点重点教学设计一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方.你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教学设计一、复习引入教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构特征.归纳:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍.这两个公式叫做(乘法的)完全平方公式.教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因.还可以引导学生将(a-b)2的结果用(a+b)2来解释:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构教学设计教学设计2.教材例4:运用完全平方公式计算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性.教学设计2.教材例4:运用完全平方公式计算:教学设计四、再探新知1.现有下图所示三种规格的卡片各若干张,请你根据二次三项式a2+2ab+b2,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义:教学设计四、再探新知教学设计2.你能根据下图说明(a-b)2=a2-2ab+b2吗?第1小题由小组合作共同完成拼图游戏,比一比哪个小组快?第2小题借助多媒体课件,直观演示面积的变化,帮助学生联想代数恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.教学设计2.你能根据下图说明(a-b)2=a2-2ab+b2吗?第1六、巩固拓展教材例5:运用乘法公式计算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;教学设计六、巩固拓展教学设计(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.教学设计(2)(a+b+c)2教学设计讲解此例之前可先让学生自学教材第111页的“添括号法则”并完成教材第111页练习第1题.然后给出例5题目,让学生思考选择哪个公式.第(1)小题的解决关键是要引导学生比较两个因式的各项符号,分别找出符号相同及相反的项,学会运用整体思想,将其与公式中的字母a,b对照,其中-2y+3=-(2y-3),故应运用平方差公式.第(2)小题可将任意两项之和看作一个整体,然后运用完全平方公式.在解此例的过程中,应注意边辩析各项的符号特征,边对照两个公式的结构特征,教师应完整详细地书写解题过程,帮助学生理解这一公式的拓展应用,突破难点.教学设计讲解此例之前可先让学生自学教材第111页的“添括号法则”并完七、课堂小结谈一谈:你对完全平方公式有了哪些认识?它与平方差公式有什么区别和联系?作业:教材第112页习题14.2第2题,第3题的(1)(3)(4),第4题.教学设计七、课堂小结教学设计在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,而不知道将几个式子联系起来看;有些学生则观察入微,表现出了较强的观察力.教师要抓住这个契机,适当对学生进行学法指导.对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提.教学反思在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教学目标1.完全平方公式的推导及其应用.2.完全平方公式的几何解释.教学目标1.完全平方公式的推导及其应用.重点难点重点完全平方公式的推导过程、结构特点、几何解释,灵活应用.难点理解完全平方公式的结构特征,并能灵活应用公式进行计算.重点难点重点教学设计一、复习引入你能列出下列代数式吗?(1)两数和的平方;(2)两数差的平方.你能计算出它们的结果吗?二、探究新知你能发现它们的运算形式与结果有什么规律吗?引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括;举例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教学设计一、复习引入教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构特征.归纳:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们积的2倍.这两个公式叫做(乘法的)完全平方公式.教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明产生这些特点的原因.还可以引导学生将(a-b)2的结果用(a+b)2来解释:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教学设计通过几个这样的运算例子,让学生观察算式与结果间的结构教学设计教学设计2.教材例4:运用完全平方公式计算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此处可先让学生独立思考,然后自主发言,口述解题思路,可先不给出题目中“运用完全平方公式计算”的要求,允许他们算法的多样化,但要求明白每种算法的局限和优越性.教学设计2.教材例4:运用完全平方公式计算:教学设计四、再探新知1.现有下图所示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农发行衡水市景县2025秋招笔试EPI能力测试题专练及答案
- 农发行宁德市福鼎市2025秋招信息科技岗笔试题及答案
- 农发行郴州市汝城县2025秋招群面案例总结模板
- 农发行成都市温江区2025秋招笔试英语题专练及答案
- 2025年黑河逊克县乡村医生公开招聘19人模拟试卷及1套参考答案详解
- 医院门诊护士个人工作总结11篇
- 中国广电威海市2025秋招技术岗专业追问清单及参考回答
- 2025年威海市立医院公开招聘高层次急需紧缺专业技术人才(33人)考前自测高频考点模拟试题附答案详解(完整版)
- 医生年度履职工作总结(10篇)
- 玉林市中储粮2025秋招综合管理岗高频笔试题库含答案
- 汽车工厂培训课件
- 拔牙后健康教育与护理指南
- 环卫车辆安全培训课件
- 丝织品微生物防治-洞察及研究
- (2025)中国石油化工集团中石化招聘笔试试题及答案
- 以桂为墨:高中桂花文化校本课程的开发与实践探索
- 游戏俱乐部投资合同协议书
- 三级老年人能力评估师试题(附答案)
- 2025年云南事业单位a类真题及答案
- 国家开放大学《政府经济学》形考任务1-4答案
- 委托品牌代工合同协议
评论
0/150
提交评论