版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-.z.有关高等数学计算过程中所涉及到的数学公式(集锦)一、(系数不为0的情况)二、重要公式(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)三、下列常用等价无穷小关系()四、导数的四则运算法则五、基本导数公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅六、高阶导数的运算法则1)(2)(3)(4)七、基本初等函数的n阶导数公式(1)(2)(3)(4)(5)(6)(7)八、微分公式与微分运算法则⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃九、微分运算法则⑴⑵⑶⑷十、基本积分公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾十一、下列常用凑微分公式积分型换元公式 十二、补充下面几个积分公式十三、分部积分法公式⑴形如,令,形如令,形如令,⑵形如,令,形如,令,⑶形如,令均可。十四、第二换元积分法中的三角换元公式(1)(2)(3)【特殊角的三角函数值】(1)(2)(3)(4))(5)(1)(2)(3)(4))(5)(1)(2)(3)(4)不存在(5)(1)不存在(2)(3)(4)(5)不存在十五、三角函数公式1.两角和公式2.二倍角公式3.半角公式4.和差化积公式5.积化和差公式6.万能公式7.平方关系8.倒数关系9.商数关系十六、几种常见的微分方程1.可分离变量的微分方程:,2.齐次微分方程:3.一阶线性非齐次微分方程:解为:三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan^2A)Sin2A=2SinA•CosA
Cos2A=Cos^2A--Sin^2A=2Cos^2A—1=1—2sin^2A
三倍角公式
sin3A=3sinA-4(sinA)^3;cos3A=4(cosA)^3-3cosA
tan3a=tana•tan(π/3+a)•tan(π/3-a)
半角公式
sin(A/2)=√{(1--cosA)/2}cos(A/2)=√{(1+cosA)/2}
tan(A/2)=√{(1--cosA)/(1+cosA)}cot(A/2)=√{(1+cosA)/(1-cosA)}
tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a)=-sin(a)cos(-a)=cos(a)sin(π/2-a)=cos(a)
cos(π/2-a)=sin(a)sin(π/2+a)=cos(a)cos(π/2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)
cos(π+a)=-cos(a)tgA=tanA=sinA/cosA
万能公式
sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}
tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a•sin(a)+b•cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]
a•sin(a)-b•cos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]
1+sin(a)=[sin(a/2)+cos(a/2)]^2;1-sin(a)=[sin(a/2)-cos(a/2)]^2;;
其他非重点三角函数
csc(a)=1/sin(a)sec(a)=1/cos(a)
双曲函数
sinh(a)=[e^a-e^(-a)]/2cosh(a)=[e^a+e^(-a)]/2
tgh(a)=sinh(a)/cosh(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinαcos(2kπ+α)=cosα
tan(2kπ+α)=tanαcot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα
sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα
sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα
求导公式c'=0(c为常数)(*^a)'=a*^(a-1),a为常数且a≠0(a^*)'=a^*lna(e^*)'=e^*(loga*)'=1/(*lna),a>0且a≠1(ln*)'=1/*(sin*)'=cos*(cos*)'=-sin*(tan*)'=(se
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025云南昆明市呈贡区城市投资集团有限公司及下属子公司第二批员工岗招聘11人备考笔试试题及答案解析
- 2025重庆酉阳自治县城区事业单位公开遴选34人模拟笔试试题及答案解析
- 2025浙江温州瓯海区第二人民医院(仙岩)面向社会招聘执业医师、护士参考笔试题库附答案解析
- 2025年福建省人资集团漳州地区招聘2人参考考试试题及答案解析
- 2025湖南省演出公司招聘2人模拟笔试试题及答案解析
- 深度解析(2026)GBT 26342-2024深度解析(2026)《国际间遗体转运 棺柩》
- 深度解析(2026)《GBT 26049-2010银包铜粉》(2026年)深度解析
- 2025中国农业大学水利与土木工程学院科研助理招聘1人备考笔试题库及答案解析
- 2025河南城发水务(长垣市)有限公司招聘6人考试笔试模拟试题及答案解析
- 2025广东中山市板芙镇招聘公办中小学校临聘教师1人模拟笔试试题及答案解析
- 短暂性脑缺血发作诊疗指南诊疗规范
- 髋关节撞击综合征诊疗课件
- 五子棋社团活动方案及五子棋社团活动教案
- 核对稿600单元概述校核
- 义务教育(新课标)初中物理实验目录
- 个人独资企业公司章程(商贸公司)
- GA/T 1073-2013生物样品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、异丙醇和正丁醇的顶空-气相色谱检验方法
- A建筑公司发展战略研究,mba战略管理论文
- 中国汽车工业协会-软件定义汽车:产业生态创新白皮书v1.0-103正式版
- 情报学-全套课件(上)
- 公司战略规划和落地方法之:五看三定工具解析课件
评论
0/150
提交评论