




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,且,则()A.3 B.3或7 C.5 D.5或82.将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为()A. B. C. D.3.若,则实数的大小关系为()A. B. C. D.4.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.35.集合的子集的个数是()A.2 B.3 C.4 D.86.已知集合,则集合的非空子集个数是()A.2 B.3 C.7 D.87.若实数满足不等式组,则的最大值为()A. B. C.3 D.28.已知三棱柱()A. B. C. D.9.已知集合,则=()A. B. C. D.10.设a,b∈(0,1)∪(1,+∞),则"a=b"是"logA.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件11.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.12.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.14.设实数,若函数的最大值为,则实数的最大值为______.15.已知,椭圆的方程为,双曲线方程为,与的离心率之积为,则的渐近线方程为________.16.已知数列的前项和且,设,则的值等于_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.18.(12分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.19.(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.20.(12分)已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.21.(12分)已知为坐标原点,点,,,动点满足,点为线段的中点,抛物线:上点的纵坐标为,.(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.22.(10分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题2、B【解析】
根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,,,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.3、A【解析】
将化成以为底的对数,即可判断的大小关系;由对数函数、指数函数的性质,可判断出与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.4、C【解析】
设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.5、D【解析】
先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.6、C【解析】
先确定集合中元素,可得非空子集个数.【详解】由题意,共3个元素,其子集个数为,非空子集有7个.故选:C.【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个.7、C【解析】
作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.8、C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=9、D【解析】
先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.10、A【解析】
根据题意得到充分性,验证a=2,b=1【详解】a,b∈0,1∪1,+∞,当"a=b当logab=log故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.11、C【解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.12、A【解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意可知:为上的单调函数,则为定值,由指数函数的性质可知为上的增函数,则在,单调递增,求导,则恒成立,则,根据函数的正弦函数的性质即可求得的取值范围.【详解】若方程无解,则或恒成立,所以为上的单调函数,都有,则为定值,设,则,易知为上的增函数,,,又与的单调性相同,在上单调递增,则当,,恒成立,当,时,,,,,,此时,故答案为:【点睛】本题考查导数的综合应用,考查利用导数求函数的单调性,正弦函数的性质,辅助角公式,考查计算能力,属于中档题.14、【解析】
根据,则当时,,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【详解】因为,又当时,,即.当时,显然成立;当时,由等价于,令,,当时,,单调递增,当时,,单调递减,,则,又,得,因此的最大值为.故答案为:【点睛】本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.15、【解析】
求出椭圆与双曲线的离心率,根据离心率之积的关系,然后推出关系,即可求解双曲线的渐近线方程.【详解】,椭圆的方程为,的离心率为:,双曲线方程为,的离心率:,与的离心率之积为,,,的渐近线方程为:,即.故答案为:【点睛】本题考查了椭圆、双曲线的几何性质,掌握椭圆、双曲线的离心率公式,属于基础题.16、7【解析】
根据题意,当时,,可得,进而得数列为等比数列,再计算可得,进而可得结论.【详解】由题意,当时,,又,解得,当时,由,所以,,即,故数列是以为首项,为公比的等比数列,故,又,,所以,.故答案为:.【点睛】本题考查了数列递推关系、函数求值,考查了推理能力与计算能力,计算得是解决本题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的极坐标方程为;曲线的直角坐标方程.(2)【解析】
(1)消去参数,可得曲线的直角坐标方程,再利用极坐标与直角坐标的互化,即可求解.(2)解法1:设直线的倾斜角为,把直线的参数方程代入曲线的普通坐标方程,求得,再把直线的参数方程代入曲线的普通坐标方程,得,得出,利用基本不等式,即可求解;解法2:设直线的极坐标方程为,分别代入曲线,的极坐标方程,得,,得出,即可基本不等式,即可求解.【详解】(1)由题曲线的参数方程为(为参数),消去参数,可得曲线的直角坐标方程为,即,则曲线的极坐标方程为,即,又因为曲线的极坐标方程为,即,根据,代入即可求解曲线的直角坐标方程.(2)解法1:设直线的倾斜角为,则直线的参数方程为(为参数,),把直线的参数方程代入曲线的普通坐标方程得:,解得,,,把直线的参数方程代入曲线的普通坐标方程得:,解得,,,,,即,,,,当且仅当,即时取等号,故的最小值为.解法2:设直线的极坐标方程为),代入曲线的极坐标方程,得,,把直线的参数方程代入曲线的极坐标方程得:,,即,,曲线的参,即,,,,当且仅当,即时取等号,故的最小值为.【点睛】本题主要考查了参数方程与普通方程,以及极坐标方程与直角坐标方程点互化,以及直线参数方程的应用和极坐标方程的应用,其中解答中熟记互化公式,合理应用直线的参数方程中参数的几何意义是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1),;(2)1.【解析】
(1)利用正弦的和角公式,结合极坐标化为直角坐标的公式,即可求得曲线的直角坐标方程;先写出曲线的普通方程,再利用公式化简为极坐标即可;(2)先求出的直角坐标,据此求得中点的直角坐标,将其转化为极坐标,联立曲线的极坐标方程,即可求得两点的极坐标,则距离可解.【详解】(1):可整理为,利用公式可得其直角坐标方程为:,:的普通方程为,利用公式可得其极坐标方程为(2)由(1)可得的直角坐标方程为,故容易得,,∴,∴的极坐标方程为,把代入得,.把代入得,.∴,即,两点间的距离为1.【点睛】本题考查极坐标方程和直角坐标方程之间的转化,涉及参数方程转化为普通方程,以及在极坐标系中求两点之间的距离,属综合基础题.19、(1)或;(2)【解析】
(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.①当时,则,所以;②当时,则,所以;⑧当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.20、(1).(2)四边形OMDN的面积是定值,其定值为.【解析】
(1)根据三角形内切圆的性质证得,由此判断出点的轨迹为椭圆,并由此求得曲线的方程.(2)将直线的斜率分成不存在或存在两种情况,求出平行四边形的面积,两种情况下四边形的面积都为,由此证得四边形的面积为定值.【详解】(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以点C的轨迹为以点A和点B为焦点的椭圆(点不在轴上),所以c,a=2,b,所以曲线G的方程为,(2)因为,故四边形为平行四边形.当直线l的斜率不存在时,则四边形为为菱形,故直线MN的方程为x=﹣1或x=1,此时可求得四边形OMDN的面积为.当直线l的斜率存在时,设直线l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|点O到直线MN的距离d,由,得xD,yD,∵点D在曲线C上,所以将D点坐标代入椭圆方程得1+2k2=2m2,由题意四边形OMDN为平行四边形,∴OMDN的面积为S,由1+2k2=2m2得S,故四边形OMDN的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省2025年高考冲刺押题(最后一卷)英语试卷含解析
- 2025-2030国内钢筋行业市场发展现状及发展前景与投资机会研究报告
- 2025-2030围巾产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025年江苏省吴江市平望中学高三下学期第一次联考英语试卷含答案
- 2025-2030医药棉纱市场投资前景分析及供需格局研究研究报告
- 2025-2030再生橡胶行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030农业批发产业市场发展分析及前景趋势与投资战略研究报告
- 2025-2030养老保险行业竞争格局分析及投资前景与战略规划研究报告
- 2025-2030全球及中国药物分配软件行业市场现状供需分析及投资评估规划分析研究报告
- 2025届湖南省湘西自治州四校高考压轴卷英语试卷含解析
- 2024复合材料和增强纤维 碳纤维增强塑料(CFRP)和金属组件十字拉伸强度的测定
- 《油气井增产技术》课件-63 拉链式压裂井场布置
- 水利工程竣工自查报告
- 新疆维吾尔自治区新2024年中考数学模拟试卷附答案
- 2024年中国老年糖尿病诊疗指南解读(2024年版)
- 震后学校维修合同书
- 李白:《将进酒》经典省公开课一等奖全国示范课微课金奖课件
- 19S406建筑排水管道安装-塑料管道
- 教师如何有效地与家长沟通
- 第11课辽宋夏金元的经济社会与文化教学设计-高中历史必修中外历史纲要上册2
- 如何与客户建立有效的沟通
评论
0/150
提交评论