



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的前项和为,且,,则()A. B. C. D.2.已知实数满足约束条件,则的最小值是A. B. C.1 D.43.若等差数列的前项和为,且,,则的值为().A.21 B.63 C.13 D.844.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.55.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为A.0 B. C. D.16.如图,在四边形中,,,,,,则的长度为()A. B.C. D.7.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()A.45 B.50 C.55 D.608.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.549.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.3610.集合,,则()A. B. C. D.11.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列12.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.432二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则__________.14.已知等边三角形的边长为1.,点、分别为线段、上的动点,则取值的集合为__________.15.已知,,则与的夹角为.16.设函数,若在上的最大值为,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.18.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.19.(12分)如图,在三棱锥中,,,,平面平面,、分别为、中点.(1)求证:;(2)求二面角的大小.20.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M21.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.22.(10分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若在上恒成立,求实数的取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【题目详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【答案点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.2、B【答案解析】
作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.3、B【答案解析】
由已知结合等差数列的通项公式及求和公式可求,,然后结合等差数列的求和公式即可求解.【题目详解】解:因为,,所以,解可得,,,则.故选:B.【答案点睛】本题主要考查等差数列的通项公式及求和公式的简单应用,属于基础题.4、A【答案解析】
根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【题目详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【答案点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.5、B【答案解析】
根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B.6、D【答案解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【题目详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【答案点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.7、D【答案解析】
根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【题目详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30,∴样本容量(即该班的学生人数)是60(人).故选:D.【答案点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题8、C【答案解析】
由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【题目详解】正项等差数列的前项和,,,解得或(舍),,故选C.【答案点睛】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.9、B【答案解析】
根据等差数列的性质可得,由等差数列求和公式可得结果.【题目详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【答案点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.10、A【答案解析】
解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【题目详解】由可得,所以,由可得,所以,所以,故选A.【答案点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.11、D【答案解析】
由折线图逐项分析即可求解【题目详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【答案点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题12、C【答案解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【题目详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【答案点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】试题分析:因,故,所以,,应填.考点:三角变换及运用.14、【答案解析】
根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,,,的表达式,再进行数量积的运算,最后求和即可得出结果.【题目详解】解:以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,则,,,,则,,,设,,,即点的坐标为,则,,,所以故答案为:【答案点睛】本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.15、【答案解析】
根据已知条件,去括号得:,16、【答案解析】
求出函数的导数,由在上,可得在上单调递增,则函数最大值为,即可求出参数的值.【题目详解】解:定义域为,在上单调递增,故在上的最大值为故答案为:【答案点睛】本题考查利用导数研究函数的单调性与最值,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值;最小值.【答案解析】
(1)结合极坐标和直角坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【题目详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小值.【答案点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.18、(1);(2).【答案解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得.试题解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19、(1)证明见解析;(2)60°.【答案解析】试题分析:(1)连结PD,由题意可得,则AB⊥平面PDE,;(2)法一:结合几何关系做出二面角的平面角,计算可得其正切值为,故二面角的大小为;法二:以D为原点建立空间直角坐标系,计算可得平面PBE的法向量.平面PAB的法向量为.据此计算可得二面角的大小为.试题解析:(1)连结PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.则DEPD,又EDAB,PD平面AB=D,DE平面PAB,过D做DF垂直PB与F,连接EF,则EFPB,∠DFE为所求二面角的平面角,则:DE=,DF=,则,故二面角的大小为法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如图,以D为原点建立空间直角坐标系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).设平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量为.设二面角的大小为,由图知,,所以即二面角的大小为.20、(1)p=4;(2)OA⋅【答案解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p221、(1)(2)【答案解析】试题分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;
(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标.试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物学基因工程知识重点试题
- 农村绿色生态农业开发共建契约书
- 文学作品赏析与文学创作测试题
- 机器人与自动化生产线研发协议
- 专业音乐演出排演及经纪代理合作协议
- 行政管理专业经济法知识点试题及答案
- 2025年工程经济统计分析试题及答案
- 电子商务法规与合规管理知识题库建设
- 落花生教学设计
- 相交线的课件
- 钢筋网检验批质量验收记录表
- 国家通用手语日常会话:手指语课件
- 停电施工安全技术交底
- 2022年山东省青岛市中考数学试卷及答案
- VMWare VSAN软件定义的超融合解决方案
- “小风筝大创意”小学STEM项目式学习活动案例
- 生态环境执法大练兵练习(行政处罚法、新固废法、大气法)
- 现浇箱梁混凝土浇筑方案计划
- 青霉素皮试液的配制PPT学习教案
- 热菜加工流程图
- RAL 劳尔色卡电子版
评论
0/150
提交评论