下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,则()A. B. C. D.2.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于()A.16 B.17 C.18 D.193.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.104.函数的图象与函数的图象的交点横坐标的和为()A. B. C. D.5.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.6.记单调递增的等比数列的前项和为,若,,则()A. B. C. D.7.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.18.已知集合,定义集合,则等于()A. B.C. D.9.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()A.2 B.4 C.5 D.610.已知复数满足(是虚数单位),则=()A. B. C. D.11.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15m3的住户的户数为()A.10 B.50 C.60 D.14012.直三棱柱中,,,则直线与所成的角的余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若满足,且方向相同,则__________.14.的展开式中的常数项为__________.15.在中,内角所对的边分别是.若,,则__,面积的最大值为___.16.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.18.(12分)如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线平面SDB.19.(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.20.(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且.(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值.21.(12分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.22.(10分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解.【题目详解】解:由,得,∴.故选C.【答案点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.B【答案解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,代入四个选项进行验证即可.【题目详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出,则不符合题意,排除;若输出,则,符合题意.故选:B.【答案点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.3.C【答案解析】
取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【题目详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.【答案点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.4.B【答案解析】
根据两个函数相等,求出所有交点的横坐标,然后求和即可.【题目详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【答案点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.5.D【答案解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.6.C【答案解析】
先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.【题目详解】因为为等比数列,所以,故即,由可得或,因为为递增数列,故符合.此时,所以或(舍,因为为递增数列).故,.故选C.【答案点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.7.B【答案解析】
过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【答案点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.8.C【答案解析】
根据定义,求出,即可求出结论.【题目详解】因为集合,所以,则,所以.故选:C.【答案点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.9.B【答案解析】
由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【题目详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【答案点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.10.A【答案解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【题目详解】解:由,得,.故选.【答案点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11.C【答案解析】从频率分布直方图可知,用水量超过15m³的住户的频率为,即分层抽样的50户中有0.3×50=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C12.A【答案解析】
设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【题目详解】设,延长至,使得,连,在直三棱柱中,,,四边形为平行四边形,,(或补角)为直线与所成的角,在中,,在中,,在中,,在中,,在中,.
故选:A.【答案点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.【题目详解】∵,∴,解得或,时,满足题意,时,,方向相反,不合题意,舍去.∴.故答案为:1.【答案点睛】本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.14.31【答案解析】
由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【题目详解】解:,则的展开式中的常数项为:.故答案为:31.【答案点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.15.1【答案解析】
由正弦定理,结合,,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【题目详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1).1(2).【答案点睛】本题主要考查解三角形的问题,熟记正弦定理以及三角形面积公式即可求解,属于基础题型.16.,【答案解析】
根据是偶函数和的图象关于点对称,即可求出满足条件的和.【题目详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【答案点睛】本题主要考查了正弦型三角函数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)见解析(Ⅱ)【答案解析】
(Ⅰ)连接交于点,取中点,连结,证明平面得到答案.(Ⅱ)分别以为轴建立如图所示的空间直角坐标系,平面的法向量为,平面的法向量为,计算夹角得到答案.【题目详解】(Ⅰ)连接交于点,取中点,连结因为为菱形,所以.因为,所以.因为二面角为直二面角,所以平面平面,且平面平面,所以平面所以因为所以是平行四边形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知两两垂直,分别以为轴建立如图所示的空间直角坐标系.设设平面的法向量为,由,取.平面的法向量为.所以二面角余弦值为.【答案点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力.18.(1)见解析(2)见解析【答案解析】
(1)连接AC、BD交于点O,交EF于点H,连接GH,再证明即可.(2)证明与即可.【题目详解】(1)连接AC、BD交于点O,交EF于点H,连接GH,所以O为AC的中点,H为OC的中点,由E、F为DC、BC的中点,再由题意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直线平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因为侧面底面ABCD,由面面垂直的性质定理可知平面ABCD,所以,因为底面ABCD是菱形,所以,因为,所以平面SDB.【答案点睛】本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.19.(1);(2)【答案解析】
(1)由,可求出的值,进而可求得的解析式;(2)分别求得和的值域,再结合两个函数的值域间的关系可求出的取值范围.【题目详解】(1)因为,所以,解得,故.(2)因为,所以,所以,则,图象的对称轴是.因为,所以,则,解得,故的取值范围是.【答案点睛】本题考查了三角函数的恒等变换,考查了二次函数及三角函数值域的求法,考查了学生的计算求解能力,属于中档题.20.(1)(2)4【答案解析】
(1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以及垂直关系,得出关系式,计算的值即可.【题目详解】(1)将点P横坐标代入中,求得,∴P(2,),,点P到准线的距离为,∴,∴,解得,∴,∴抛物线C的方程为:;(2)抛物线的焦点为F(0,1),准线方程为,;设,直线AB的方程为,代入抛物线方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,则.【答案点睛】本题考查直线与抛物线的位置关系,以及抛物线与圆的方程应用问题,考查转化思想以及计算能力,是中档题.21.(1)见解析;(2)【答案解析】
(1)不等式等价于,设,利用导数可证恒成立,从而原不等式成立.(2)由题设条件可得在上有两个不同零点,且,利用导数讨论的单调性后可得其最小值,结合前述的集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年面向社会公开招聘急需紧缺人才备考题库及1套完整答案详解
- 大连理工大学2025年专职组织员招聘备考题库及参考答案详解一套
- 2026届江西省抚州市临川区二中生物高一上期末考试试题含解析
- 江苏省沛县面向2026年毕业生公开招聘编制教师备考题库参考答案详解
- 合肥市庐江县工业投资有限公司2025年公开招聘工作人员备考题库(含答案详解)
- 2026年成都市双流区怡心第七幼儿园招聘备考题库及答案详解一套
- 信息集成考试题及答案
- 广东省肇庆第四中学2026届高一上数学期末达标检测试题含解析
- 小学语文教师的教育初心与专业成长
- 2026年苏州绕城高速公路有限公司公开招聘备考题库及答案详解(夺冠系列)
- 2025年4月自考00220行政法与行政诉讼法试题
- 微生物-动物互作-洞察及研究
- 个人与团队管理-形考任务9(客观题10分)-国开-参考资料
- 2024-2025学年北京西城区八年级初二(上)期末生物试卷(含答案)
- 【MOOC】思想道德与法治-南京大学 中国大学慕课MOOC答案
- 八年级历史上册知识结构复习提纲
- 建筑装饰施工中的安全教育培训考核试卷
- 江苏省淮安市八校联考2025届物理九上期末统考试题含解析
- 2024年四川省内江市中考物理试卷附答案
- 钢铁购销简单合同范本
- TSG特种设备安全技术规范TSGD-202工业管道安全技术规程
评论
0/150
提交评论