 
         
         
         
         
        版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
..对流扩散方程有限差分方法求解对流扩散方程的差分格式有很多种,在本节中将介绍以下3种有限差分格式:中心差分格式、Samarskii格式、Crank-Nicolson型隐式差分格式。3.1中心差分格式时间导数用向前差商、空间导数用中心差商来逼近,那么就得到了〔1式的中心差分格式〔3若令,,则〔3式可改写为〔4从上式我们看到,在新的时间层上只包含了一个未知量,它可以由时间层上的值,,直接计算出来。因此,中心差分格式是求解对流扩散方程的显示格式。假定是定解问题的充分光滑的解,将,,分别在处进行Taylor展开:代入<4>式,有显然,当,时,,即中心差分格式与定解问题是相容的。由以上的讨论也可得知,对流扩散方程的中心差分格式的截断误差为。对于我们上面构造的差分格式,是否可以直接用于实际计算呢?也就是说,如果初始值有误差,在计算过程中误差会不会扩大传播呢?这就是接下来我们要讨论的是差分方程的稳定性问题。下面用Fourier方法来分析中心差分格式的稳定性。令,代入到〔4式整理得所以该差分格式的增长因子为:其模的平方为由于,所以〔即差分格式稳定的充分条件为上式可以改写为注意到,所以上面不等式满足的条件为,。由此得到差分格式〔3的稳定性限制为,。故有结论:对流扩散方程的中心差分格式是条件稳定的。根据Lax等价定理,我们可以知道,对流扩散方程的中心差分格式是条件收敛的。3.2Samarskii格式设>0,先对方程<1>作扰动,得到另一个对流扩散方程〔5其中,当时,〔5式化为〔1式对于〔5式,构造迎风格式〔6差分格式〔6称为逼近对流扩散方程的Samarskii格式。首先推导〔6的截断误差。设是对流扩散方程〔1式的充分光滑的解令用Taylor级数展开有再令用Taylor级数展开有由于所以当,时,,所以Samarskii格式与定解问题是相容的,并且其截断误差为。现在看看Samarskii格式的稳定性。将〔6式两边同时加上,把〔6式化为令,则上式即为:根据中心显示格式稳定性的讨论,可以得到〔6式的稳定性条件为,即,稳定性的第二个条件等价于而利用不等式所以利用稳定性的第一个条件,有,从而可知稳定性条件的第二个条件可由第一个条件推出,因此差分格式的稳定性条件为,即。由Lax等价定理可知,Samarskii格式也是条件收敛的。3.3Crank-Nicolson型隐式差分格式前面讨论了求解对流扩散方程的两种显示格式,它们都是条件稳定的,为了放松稳定性条件,可以采用隐式格式进行求解。现在考虑Crank-Nicolson型隐式差分格式〔7令,,则〔7式可化为〔8把〔8式用矩阵的形式=+〔9设,,,则有下面讨论Crank-Nicolson型格式的截断误差和精度。该格式涉及到时间层和时间层上的,,处六个点。设是定解问题的充分光滑的解,把<7>式中各的值用代替,然后将,,,,,分别在点处进行Taylor展开:这里出现的的各阶偏导数假设都是存在而且连续的。于是〔7式的截断误差显然,Crank-Nicolson型格式的精度是二阶的。再来看看该格式的稳定性情况,我们还是用Fourier方法来分析。令,代入到〔8式整理得所以Crank-Nicolson型格式的增长因子是其模的平方改写上式由于及上式的分母为正,故即,从而得出Crank-Nicolson型格式是无条件稳定的。根据Lax等价定理,Crank-Nicolson型格式也是无条件收敛的。4、数值例子给出如下对流扩散方程的初边值问题:所讨论的对流扩散方程的精确解为4.1三种差分格式的比较在各种对流扩散问题中,有许多对流相对于扩散来说在问题中起主导作用。对流占有扩散问题的数值求解面临很多困难。因此,对流占有扩散问题的有效数值解法一直是计算数学中重要的研究内容。取,,,,此时上面给出的就是一个对流占优扩散问题。那么,本文讨论的三种差分格式对对流占有扩散问题的求解效果是怎样的呢?现在我们就来看看这个问题。首先,根据差分格式的稳定性条件,确定的取值范围。〔1中心差分格式:根据稳定性条件,可知,要使中心差分格式稳定,的取值必须满足:〔2Samarskii格式:根据稳定性条件可知,的取值必须满足:〔3Crank-Nicolson格式:该差分格式是无条件稳定的,所以可以取任意值。要使三种差分格式都是稳定的,不妨取。首先,我们通过表格看看三种差分格式的数值解与准确解之间的相对误差。表4.1时三种差分格式结果的比较x中心差分格式Samarskii格式Crank-Nicolson格式准确解数值解误差数值解误差数值解误差01.219201.219201.219201.21920.11.1009-0.00231.10760.00441.10340.00021.10320.20.9950-0.00321.00510.00690.99850.00030.99820.30.8999-0.00330.91100.00780.90350.00030.90320.40.8142-0.00310.82500.00770.81750.00020.81730.50.7367-0.00280.74670.00720.73970.00020.73950.60.6666-0.00250.67570.00660.66930.00020.66910.70.6031-0.00230.61140.0060.60560.00020.60540.80.5459-0.00190.55320.00540.54800.00020.54780.90.4931-0.00260.50060.00490.49590.00020.49571.00.448500.448500.448500.4485表4.2时三种差分格式结果的比较x中心差分格式Samarskii格式Crank-Nicolson格式准确解数值解误差数值解误差数值解误差01.489401.489401.489401.48940.11.3450-0.00271.35370.0061.34790.00021.34770.21.2144-0.00501.23010.01071.21990.00051.21940.31.0969-0.00651.11710.01371.10400.00061.10340.40.9915-0.00691.01370.01530.99900.00060.99840.50.8966-0.00680.91910.01570.90400.00060.90340.60.8115-0.00590.83270.01530.81790.00050.81740.70.7333-0.00630.75390.01430.74020.00060.73960.80.6656-0.00360.68240.01320.66960.00040.66920.90.5982-0.00740.61760.0120.60620.00060.60561.00.547900.547900.547900.5479表4.3时三种差分格式的结果比较x中心差分格式Samarskii格式Crank-Nicolson格式准确解数值解误差数值解误差数值解误差01.819601.819601.819601.81960.11.6433-0.00311.65380.00741.64670.00031.64640.21.4839-0.00581.50320.01351.49020.00051.48970.31.3397-0.00831.36600.0181.34870.00071.34800.41.2100-0.00971.24100.02131.22050.00081.21970.51.0923-0.01131.12690.02331.10460.0011.10360.60.9892-0.00941.02260.02400.99940.00080.99860.70.8911-0.01250.92740.02380.90470.00110.90360.80.8121-0.00550.84040.02280.81810.00050.81760.90.7257-0.01410.76120.02140.74100.00120.73981.00.669400.669400.669400.6694表4.4时三种差分格式结果的比较x中心差分格式Samarskii格式Crank-Nicolson格式准确解数值解误差数值解误差数值解误差02.222902.222902.222902.22290.12.0073-0.0042.02040.00912.01170.00042.01130.21.8132-0.00671.83640.01651.82050.00061.81990.31.6366-0.01011.66910.02241.64760.00091.64670.41.4794-0.01061.51690.02691.49090.00091.49000.51.3325-0.01571.37840.03021.34960.00141.34820.61.2087-0.01121.25210.03221.22090.0011.21990.71.0839-0.01991.13700.03321.10560.00181.10380.80.9915-0.00731.03180.0330.99940.00060.99880.90.8809-0.02290.93580.0320.90570.00190.90381.00.817700.817700.817700.8177接下来,我们看看这三种差分格式在不同时间的图形。图4.1时三种差分格式结果的比较图4.2时三种差分格式结果的比较图4.3时三种差分格式结果的比较图4.4时三种差分格式结果的比较4.2结果分析由表格中的数据以及图示可以看出,对于对流扩散方程的数值求解,三种差分格式的稳定性都比较好,其中以Crank-Nicolson格式的效果最好。5.小结对流扩散问题的数值求解一直是许多计算工作者比较重视的一类问题。本文分析了对流扩散方程的中心差分格式、Samarskii格式以及Crank-Nicolson格式。中心差分格式和Samarskii格式是显式格式,所以很适合于并行计算,但由于稳定性条件的限制,必须采用非常小的时间步长来计算。Crank-Nicolson格式是隐式格式,它是无条件稳定的,但在每一时间层上要求解线性方程组,实现并行计算有一定困难。中心差分格式的优点是简单易算,但由于截断误差为,又仅当,时才稳定和收敛,所以想要算得略为精确一点,就要缩小。并且注意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 证券从业资格《证券发行与承销》考试真题及答案解析(多选题)
- 2025年企业职业健康管理师备考题库及答案解析
- 手术患者意外伤害预防考核附有答案
- 安全驾驶简单问答题库及答案解析
- 2025年劳动课程监测题库及答案
- 人体解剖学护理习题库及答案解析
- 2025年实验室技术操作规范考核模拟试题及答案解析
- 2025年临床药师资格考试《药理治疗学》备考题库及答案解析
- 2025年精功集团有限公司校园招聘模拟试题附带答案详解完整答案详解
- 交通考试题及答案
- 2025年中小学教师职称评定答辩题(附答案)
- 国开2025年《行政领导学》形考作业1-4答案
- 英语三级词汇表
- 化工总控工(技师高级技师)考试题库-导出版
- 《电的简单认识》一年级家长进课堂安全用电主题教育PPT
- 露天矿开采工艺课件
- GB/T 5005-2010钻井液材料规范
- 金龙湾水上旅游建设填海项目工程可行性研究报告
- 颈源性耳鸣的临床研究-中日友好医院针灸科李石良课件
- 颜色标准LAB值对照表
- (机构适用)上海市2021年中考语文冲刺(考点梳理+强化训练)08 记叙文阅读(一)整体把握(含答案)
 
            
评论
0/150
提交评论